$$
\begin{array}{rll}
x(t+1)=f(x(t), u(t)) & x\left(t_{0}\right)=x_{0} & \\
& t \in T=\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\} \\
x(t) \in \mathbb{R}^{n} & & u(t) \in \mathbb{R}^{m} \\
& & \\
f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} & & x(t+1)=f(x(t), u(t)) \\
\ell: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R} & & \ell(x(t), u(t)) \\
\ell_{\mathrm{f}}: & \mathbb{R}^{n} \rightarrow \mathbb{R} & \\
& & \ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
\end{array}
$$

Let $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$ be given, and consider the optimal control problem:

$$
\begin{aligned}
& J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
& \inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in T}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{aligned}
$$

Define the cost-to-go:

$$
V: T \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\ \tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
$$

Note that computing the cost-to-go $V\left(t_{0}, x_{0}\right)$ from the initial state x_{0} at the initial time t_{0} essentially amounts to minimize the cost $J\left(t_{0}, x_{0} ; u(\cdot)\right)$.

If $t=t_{\mathrm{f}}$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\inf _{u\left(t_{\mathrm{f}}\right) \in \mathbb{R}^{m}} J\left(t_{\mathrm{f}}, x ; u\left(t_{\mathrm{f}}\right)\right) \\
& =\inf _{u\left(t_{\mathrm{f}}\right) \in \mathbb{R}^{m}} \underbrace{\ell_{\mathrm{f}}(x)}_{\begin{array}{c}
\text { independent } \\
\text { of } u\left(t_{\mathrm{f}}\right)
\end{array}}=\ell_{\mathrm{f}}(x)
\end{aligned}
$$

If $t=t_{\mathrm{f}}-1$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}-1, x\right) & =\inf _{u\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}\right) \in \mathbb{R}^{m}} J\left(t_{\mathrm{f}}-1, x ; u(\cdot)\right) \\
& =\inf _{u\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}\right) \in \mathbb{R}^{m}}\{\underbrace{\ell\left(x\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}-1\right)\right)}_{\text {independent of } u\left(t_{\mathrm{f}}\right)}+\underbrace{\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)}_{\begin{array}{c}
\text { depend on both } \\
u\left(t_{\mathrm{f}}-1\right) \text { and } u\left(t_{\mathrm{f}}\right)
\end{array}}\} \\
& =\inf _{u\left(t_{\mathrm{f}}-1\right) \in \mathbb{R}^{m}}\{\ell\left(x, u\left(t_{\mathrm{f}}-1\right)\right)+\underbrace{u\left(t_{\mathrm{f}}\right)}_{\begin{array}{c}
\left.\inf _{\mathrm{f}}\right) \in \mathbb{R}^{m}
\end{array} \ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)}\} \\
& =\inf _{u\left(t_{\mathrm{f}}-1\right) \in \mathbb{R}^{m}}\left\{\ell\left(x, u\left(t_{\mathrm{f}}-1\right)\right)+V\left(t_{\mathrm{f}}, f\left(x, f\left(t_{\mathrm{f}}\right)\right)=V\left(t_{\mathrm{f}}, f\left(x, u\left(t_{\mathrm{f}}-1\right)\right)\right)\right.\right. \\
& \left.\left.=\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+V\left(t_{f}-1\right)\right)\right)\right\}
\end{aligned}
$$

For $t<t_{\mathrm{f}}$:

$$
\begin{aligned}
& V(t, x)=\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{f}\right\}}} J(t, x ; u(\cdot)) \\
& =\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}}\left\{\sum_{\tau=t}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\} \\
& =\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}}\{\underbrace{\ell(x, u(t))}_{\substack{\text { independent of } u(\tau), \tau \in\left\{t+1, t+2, \ldots, t_{\mathrm{f}}\right\}}}+\underbrace{\sum_{\tau=t+1}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)}_{\text {depend on all } u(\tau), \tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}\} \\
& =\inf _{u(t) \in \mathbb{R}^{m}}\{\ell(x, u(t))+\underbrace{\left.\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t+1, t+2, \ldots, t_{\mathrm{f}}\right\}}}\left\{\sum_{\tau=t+1}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\}\right\}}_{=V(t+1, x(t+1))=V(t+1, f(x, u(t)))} \\
& =\inf _{u(t) \in \mathbb{R}^{m}}\{\ell(x, u(t))+V(t+1, f(x, u(t)))\} \\
& =\inf _{u \in \mathbb{R}^{m}}\{\ell(x, u)+V(t+1, f(x, u))\}
\end{aligned}
$$

Bellman equation:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) & & \text { for all } x \in \mathbb{R}^{n} \\
V(t, x) & =\inf _{u \in \mathbb{R}^{m}}\{\ell(x, u)+V(t+1, f(x, u))\} & & \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}
\end{aligned}
$$

Let us suppose that the cost-to-go V has been determined. For a given state x at time t, the optimal input $u(t)$ is given as

$$
u(t)=\arg \min _{u \in \mathbb{R}^{m}}\{\ell(x, u)+V(t+1, f(x, u))\}
$$

This inspires the implantation of the optimal control in a state feed back form:

$$
\begin{aligned}
u(t) & =u(x(t))=\arg \min _{u \in \mathbb{R}^{m}}\{\underbrace{\ell(x(t), u)+V(t+1, f(x(t), u))}_{\text {computed using the measured state } x(t)}\} \\
x(t+1) & =f(x(t), u(t)) \quad x\left(t_{0}\right)=x_{0}
\end{aligned}
$$

