
ẋ(t) = f(x(t), u(t)) x(t0) = x0 t ∈ [ t0, tf ]

x(t) ∈ Rn u(t) ∈ Rm

f : Rn × Rm → Rn ẋ(t) = f(x(t), u(t))

` : Rn × Rm → R `(x(t), u(t))

`f : Rn → R `f(x(tf))

Let x(t0) = x0 be given, and consider the optimal control problem:

J(t0, x0;u(·)) =
∫ tf

t0

`(x(τ), u(τ))dτ + `f(x(tf))

inf
u(τ)

τ∈[ t0,tf ]

J(t0, x0;u(·))
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Define the cost-to-go:

V : R× Rn → R V (t, x) = inf
u(τ)

τ∈[ t,tf ]

J(t, x;u(·))

Note that computing the cost-to-go V (t0, x0) from the initial state x0 at the
initial time t0 essentially amounts to minimize the cost J(t0, x0;u(·)).

2



If t = tf :

V (tf , x) = inf
u(tf )

J(tf , x;u(tf))

= inf
u(tf )

`f(x)︸ ︷︷ ︸
independent

of u(tf )

= `f(x)
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For t < tf , let us pick some small positive constant δt so that t + δt is still
smaller than tf :

V (t, x) = inf
u(τ)

τ∈[ t,tf ]

J(t, x;u(·))

= inf
u(τ)

τ∈[ t,tf ]

{
∫ tf

t

`(x(τ), u(τ))dτ + `f(x(tf))}

= inf
u(τ)

τ∈[ t,tf ]

{
∫ t+δt

t

`(x(τ), u(τ))dτ︸ ︷︷ ︸
independent of u(τ),

τ ∈ [ t + δt, tf ]

+

∫ tf

t+δt

`(x(τ), u(τ))dτ + `f(x(tf))︸ ︷︷ ︸
depend on all u(τ), τ ∈ [ t, tf ]

}

= inf
u(τ)

τ∈[ t,t+δt ]

{
∫ t+δt

t

`(x(τ), u(τ))dτ + inf
u(τ)

τ∈[ t+δt,tf ]

{
∫ tf

t+δt

`(x(τ), u(τ))dτ + `f(x(tf))}

︸ ︷︷ ︸
= V (t + δt, x(t + δt))

}

= inf
u(τ)

τ∈[ t,t+δt ]

{
∫ t+δt

t

`(x(τ), u(τ))dτ + V (t+ δt, x(t+ δt))}

V (t, x) = inf
u(τ)

τ∈[ t,t+δt ]

{
∫ t+δt

t

`(x(τ), u(τ))dτ + V (t+ δt, x(t+ δt))}

This represents the principle of optimality.
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We now consider the infinitesimal version of the above relationship. Let us
consider first-order Taylor expansion:

x(t+ δt) = x(t) + δx

= x(t) +
dx

dt
(t)δt+ o(δt)

= x(t) + f(x(t), u(t))δt+ o(δt)

= x+ f(x, u(t))δt+ o(δt)︸ ︷︷ ︸
δx

This allows us the expressions:

V (t+ δt, x(t+ δt)) = V (t, x(t)) +
∂V

∂t
(t, x(t))δt+ o(δt) +

(
∂V

∂x
(t, x(t))

)T

δx+ o(δx)

= V (t, x) +
∂V

∂t
(t, x)δt+

(
∂V

∂x
(t, x)

)T

f(x, u(t))δt+ o(δt)

and ∫ t+δt

t

`(x(τ), u(τ))dτ =

∫ δt

0

`(x(t+ τ), u(t+ τ))dτ

= `(x(t), u(t))δt+ o(δt)

= `(x, u(t))δt+ o(δt)

By substituting the above expressions, we obtain

V (t, x) = inf
u(τ)

τ∈[ t,t+δt ]

{`(x, u(t))δt+ V (t, x) +
∂V

∂t
(t, x)δt+

(
∂V

∂x
(t, x)

)T

f(x, u(t))δt+ o(δt)}

0 =
∂V

∂t
(t, x)δt+ inf

u(τ)
τ∈[ t,t+δt ]

{`(x, u(t))δt+
(

∂V

∂x
(t, x)

)T

f(x, u(t))δt+ o(δt)}+ V (t, x)− V (t, x)

=
∂V

∂t
(t, x)δt+ inf

u(τ)
τ∈[ t,t+δt ]

{`(x, u(t))δt+
(

∂V

∂x
(t, x)

)T

f(x, u(t))δt+ o(δt)}

We note here that the values u(τ), τ ∈ ( t, t + δt ] affect the expression inside
the infimum only through the o(δt) term. Let us now divide by δt, we have

0 =
∂V

∂t
(t, x) + inf

u(τ)
τ∈[ t,t+δt ]

{`(x, u(t)) +
(

∂V

∂x
(t, x)

)T

f(x, u(t)) +
o(δt)

δt
}

Let us take δt to be small as δt → 0. The higher order term o(δt)/δt disappears,
and the infimum is taken over the instantaneous value of u at time t. We obtain

0 =
∂V

∂t
(t, x) + inf

u∈Rm
{`(x, u) +

(
∂V

∂x
(t, x)

)T

f(x, u)}
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Hamilton-Jacobi-Bellman equation:

V (tf , x) = `f(x) for all x ∈ Rn

0 =
∂V

∂t
(t, x) + inf

u∈Rm
{`(x, u) +

(
∂V

∂x
(t, x)

)T

f(x, u)} for all x ∈ Rn and all t ∈ [ t0, tf )

Let us suppose that the cost-to-go V : R × Rn → R has been determined.
For a given state x at time t, the optimal input u(t) is given as

u(t) = arg min
u∈Rm

{`(x, u) +
(

∂V

∂x
(t, x)

)T

f(x, u)}

This inspires the implementation of the optimal control in a state feedback form:

u(t) = u(x(t))

= arg min
u∈Rm

{`(x(t), u) +
(

∂V

∂x
(t, x(t))

)T

f(x(t), u)︸ ︷︷ ︸
computed using the measured state x(t)

}

ẋ(t) = f(x(t), u(t)) x(t0) = x0

6


