$$
\begin{array}{rlrl}
\dot{x}(t)=f(x(t), u(t)) & x\left(t_{0}\right) & =x_{0} & \\
& x(t) & \left.\in t_{0}, t_{\mathrm{f}}\right] \\
& & u(t) \in \mathbb{R}^{m}
\end{array}
$$

$$
\begin{array}{rll}
f: & \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} & \dot{x}(t)=f(x(t), u(t)) \\
\ell: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R} & \ell(x(t), u(t)) \\
\ell_{\mathrm{f}} & : \mathbb{R}^{n} \rightarrow \mathbb{R} & \ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
\end{array}
$$

Let $x\left(t_{0}\right)=x_{0}$ be given, and consider the optimal control problem:

$$
\begin{aligned}
J\left(t_{0}, x_{0} ; u(\cdot)\right)= & \int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
& \inf _{\substack{u(\tau) \\
\tau \in\left[t_{0}, t_{\mathrm{f}}\right]}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{aligned}
$$

Define the cost-to-go:

$$
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
$$

Note that computing the cost-to-go $V\left(t_{0}, x_{0}\right)$ from the initial state x_{0} at the initial time t_{0} essentially amounts to minimize the cost $J\left(t_{0}, x_{0} ; u(\cdot)\right)$.

If $t=t_{\mathrm{f}}$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\inf _{u\left(t_{\mathrm{f}}\right)} J\left(t_{\mathrm{f}}, x ; u\left(t_{\mathrm{f}}\right)\right) \\
& =\inf _{u\left(t_{\mathrm{f}}\right)} \underbrace{\ell_{\mathrm{f}}(x)}_{\text {independent }}=\ell_{\mathrm{f}}(x)
\end{aligned}
$$

For $t<t_{\mathrm{f}}$, let us pick some small positive constant δt so that $t+\delta t$ is still smaller than t_{f} :

$$
\begin{aligned}
& V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{f}\right]}} J(t, x ; u(\cdot)) \\
& =\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}}\left\{\int_{t}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\} \\
& =\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}}\{\underbrace{\left.\int_{t}^{\int_{t+\delta t}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)}\right\}}_{\begin{array}{c}
\text { independent of } u(\tau), \\
\tau \in\left[t+\delta t, t_{\mathrm{f}}\right]
\end{array} \int_{\text {depend on all } u(\tau), \tau \in\left[t, t_{\mathrm{f}}\right]}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau} \\
& =\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+\underbrace{\left.\inf _{\substack{u(\tau) \\
\tau \in\left[t+\delta t, t_{\mathrm{f}}\right]}}\left\{\int_{t+\delta t}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\}\right\}}_{=V(t+\delta t, x(t+\delta t))} \\
& =\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\} \\
& V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
\end{aligned}
$$

This represents the principle of optimality.

We now consider the infinitesimal version of the above relationship. Let us consider first-order Taylor expansion:

$$
\begin{aligned}
x(t+\delta t) & =x(t)+\delta x \\
& =x(t)+\frac{d x}{d t}(t) \delta t+o(\delta t) \\
& =x(t)+f(x(t), u(t)) \delta t+o(\delta t) \\
& =x+\underbrace{f(x, u(t)) \delta t+o(\delta t)}_{\delta x}
\end{aligned}
$$

This allows us the expressions:

$$
\begin{aligned}
V(t+\delta t, x(t+\delta t)) & =V(t, x(t))+\frac{\partial V}{\partial t}(t, x(t)) \delta t+o(\delta t)+\left(\frac{\partial V}{\partial x}(t, x(t))\right)^{\mathrm{T}} \delta x+o(\delta x) \\
& =V(t, x)+\frac{\partial V}{\partial t}(t, x) \delta t+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t)) \delta t+o(\delta t)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau & =\int_{0}^{\delta t} \ell(x(t+\tau), u(t+\tau)) d \tau \\
& =\ell(x(t), u(t)) \delta t+o(\delta t) \\
& =\ell(x, u(t)) \delta t+o(\delta t)
\end{aligned}
$$

By substituting the above expressions, we obtain

$$
\begin{aligned}
V(t, x) & =\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\ell(x, u(t)) \delta t+V(t, x)+\frac{\partial V}{\partial t}(t, x) \delta t+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t)) \delta t+o(\delta t)\right\} \\
0 & =\frac{\partial V}{\partial t}(t, x) \delta t+\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\ell(x, u(t)) \delta t+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t)) \delta t+o(\delta t)\right\}+V(t, x)-V(t, x) \\
& =\frac{\partial V}{\partial t}(t, x) \delta t+\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\ell(x, u(t)) \delta t+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t)) \delta t+o(\delta t)\right\}
\end{aligned}
$$

We note here that the values $u(\tau), \tau \in(t, t+\delta t]$ affect the expression inside the infimum only through the $o(\delta t)$ term. Let us now divide by δt, we have

$$
0=\frac{\partial V}{\partial t}(t, x)+\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\ell(x, u(t))+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t))+\frac{o(\delta t)}{\delta t}\right\}
$$

Let us take δt to be small as $\delta t \rightarrow 0$. The higher order term $o(\delta t) / \delta t$ disappears, and the infimum is taken over the instantaneous value of u at time t. We obtain

$$
0=\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\}
$$

Hamilton-Jacobi-Bellman equation:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) & & \text { for all } x \in \mathbb{R}^{n} \\
0 & =\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} & & \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

Let us suppose that the cost-to-go $V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ has been determined. For a given state x at time t, the optimal input $u(t)$ is given as

$$
u(t)=\arg \min _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\}
$$

This inspires the implementation of the optimal control in a state feedback form:

$$
\begin{aligned}
u(t) & =u(x(t)) \\
& =\arg \min _{u \in \mathbb{R}^{m}}\{\underbrace{\ell(x(t), u)+\left(\frac{\partial V}{\partial x}(t, x(t))\right)^{\mathrm{T}} f(x(t), u)}_{\text {computed using the measured state } x(t)}\} \\
\dot{x}(t) & =f(x(t), u(t)) \quad x\left(t_{0}\right)=x_{0}
\end{aligned}
$$

