Advanced Control Systems Engineering I: Optimal Control

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
 - decentralization and integration via mechanism design

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

optimal control problem

$$X = \{x_1, x_2, \dots, x_{16}\} \qquad u(t) \in U = \{u_u, u_d\}$$
$$t \in [0, 1, 2, 3, 4, 5, 6]$$

$$\inf_{u(\cdot)} J(0, x_1; u(\cdot)) = \inf_{u(\cdot)} \sum_{\tau=0}^{6} \ell(x(\tau), u(\tau))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

minimum-cost path problem

multistage decision process

optimal control problem

define $V: X \to \mathbb{R}$:

$V(x_1) = 40$	$V(x_5) = 29$	$V(x_9) = 21$	$V(x_{13}) = 20$
$V(x_2) = 35$	$V(x_6) = 31$	$V(x_{10}) = 27$	$V(x_{14}) = 10$
$V(x_3) = 36$	$V(x_7) = 25$	$V(x_{11}) = 18$	$V(x_{15}) = 11$
$V(x_4) = 29$	$V(x_8) = 23$	$V(x_{12}) = 16$	$V(x_{16}) = 0$

 $V(x_i)$ provides the optimal cost starting from x_i V: cost-to-go

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

optimal control problem

$$x(t) \in X = \{x_1, x_2, \dots, x_n\} \qquad u(t) \in U = \{u_1, u_2, \dots, u_m\}$$
$$t \in \{t_0, t_0 + 1, \dots, t_f\}$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$\inf_{u(\cdot)} J(t_0, x_0; u(\cdot))$$

optimal control problem

$$x(t) \in X = \{x_1, x_2, \dots, x_n\} \qquad u(t) \in U = \{u_1, u_2, \dots, u_m\}$$
$$t \in \{t_0, t_0 + 1, \dots, t_f\}$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$\inf_{u(\cdot)} J(t_0, x_0; u(\cdot))$$
$$\frac{\phi(x_i, u_j) \| u_1 \ u_2 \ \cdots \ u_m}{x_1 \ x_2 \ x_2 \ x_8 \ \cdots \ x_n}$$
$$\vdots$$
$$\vdots$$
$$x_n \| x_5 \ x_{n-7} \ \cdots \ x_2$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

optimal control problem

$$x(t) \in X = \{x_1, x_2, \dots, x_n\} \qquad u(t) \in U = \{u_1, u_2, \dots, u_m\}$$
$$t \in \{t_0, t_0 + 1, \dots, t_f\}$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$\inf_{u(\cdot)} J(t_0, x_0; u(\cdot))$$

$\ell(x_i, u_j)$	$ $ u_1	u_2	•••	u_m		$\ell_{\rm f}(x_i)$
x_1	3	2	•••	-1	x_1	3
x_2	2	-2	•••	6	x_2	2
÷					:	
x_n	-1	5		1.2	x_n	-1

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

optimal control problem

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$
$$u(t) \in U = \{u_1, u_2, \dots, u_m\}$$
$$t \in T = \{t_0, t_0 + 1, \dots, t_f\}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

optimal control problem

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$

$$u(t) \in U = \{u_1, u_2, \dots, u_m\}$$

$$t \in T = \{t_0, t_0 + 1, \dots, t_f\}$$

$\phi: \ X \times \ U \to X$	$x(t+1) = \phi(x(t), u(t))$
$\ell:\ X\times\ U\to\mathbb{R}$	$\ell(x(t),u(t))$
$\ell_{\mathrm{f}}: X \to \mathbb{R}$	$\ell_{ m f}(x(t_{ m f}))$

optimal control problem

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$
$$u(t) \in U = \{u_1, u_2, \dots, u_m\}$$
$$t \in T = \{t_0, t_0 + 1, \dots, t_f\}$$

$$\begin{split} \phi : \ X \times U \to X & x(t+1) = \phi(x(t), u(t)) \\ \ell : \ X \times U \to \mathbb{R} & \ell(x(t), u(t)) \\ \ell_{\mathrm{f}} : \ X \to \mathbb{R} & \ell_{\mathrm{f}}(x(t_{\mathrm{f}})) \end{split}$$

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

optimal control problem

(naive) computational complexities

• # of possible paths: 20 DP had to find only: 15

n imes n	4	5	6	7	8
# of paths	20	70	252	724	2632
DP computations	15	24	35	48	63

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

brute force search:

$$\begin{array}{ll} x(t) \in X = \{x_1, x_2, \dots, x_n\} & |X|: & \text{cardinality of } X \\ u(t) \in U = \{u_1, u_2, \dots, u_m\} & |U| \\ t \in T = \{t_0, t_0 + 1, \dots, t_f\} & |T| \\ \end{array}$$

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

brute force search:

 $O(|U|^{|T|} \times |T| \times |X|)$

$$\begin{array}{ll} x(t) \in X = \{x_1, x_2, \dots, x_n\} & |X|: & \text{cardinality of } X \\ u(t) \in U = \{u_1, u_2, \dots, u_m\} & |U| \\ t \in T = \{t_0, t_0 + 1, \dots, t_f\} & |T| \\ \end{array}$$

finite state systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

finite state systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

define the cost-to-go:

finite state systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

define the cost-to-go:

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_{f}\}}} J(t, x; u(\cdot))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

finite state systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

define the cost-to-go:

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

computing the cost-to-go $V(t_0, x_0)$ from the initial state x_0 at the initial time t_0 essentially amounts to minimize the cost $J(t_0, x_0; u(\cdot))$

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U\\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot)$$

)

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

example: |X| = 5 |U| = 3 |T| = 3

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_t\}}} J(t, x; u(\cdot))$$

example: |X| = 5 |U| = 3 |T| = 3

$\phi(x_i, u_j)$	u_1	u_2	u_3	$\ell(x_i, u_j)$	u_1	u_2	u_3		$\ell_{\rm f}(x_i)$		$V(1, x_i)$	$V(2, x_i)$	$V(3, x_i)$
x_1	x_3	x_1	x_5	x_1	1	5	3	x_1	1	x_1			
x_2	x_4	x_3	x_2	x_2	4	1	2	x_2	2	x_2			
x_3	x_2	x_5	x_4	x_3	2	3	1	x_3	3	x_3			
x_4	x_1	x_2	x_1	x_4	3	4	5	x_4	4	x_4			
x_5	x_5	x_4	x_3	x_5	5	2	4	x_5	5	x_5			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$V: \ T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t + 1, \dots, t_f\}}} J(t, x; u(\cdot))$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$V: \ T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t + 1, \dots, t_f\}}} J(t, x; u(\cdot))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If $t = t_{\rm f}$:

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

If $t = t_{\rm f}$:

$$V(t_{\rm f}, x) = \inf_{u(t_{\rm f}) \in U} J(t_{\rm f}, x; u(t_{\rm f}))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

If $t = t_{\rm f}$:

$$\begin{split} V(t_{\mathrm{f}}, x) &= \inf_{u(t_{\mathrm{f}}) \in U} J(t_{\mathrm{f}}, x; u(t_{\mathrm{f}})) \\ &= \inf_{\substack{u(t_{\mathrm{f}}) \in U \\ u(t_{\mathrm{f}}) \in U \\ \text{independent} \\ \text{of } u(t_{\mathrm{f}})}} = \ell_{\mathrm{f}}(x) \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_{f}\}}} J(t, x; u(\cdot))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_{\mathbf{f}}\}}} J(t, x; u(\cdot))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If $t = t_{\rm f} - 1$:

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If $t = t_{\rm f} - 1$:

$$V(t_{\rm f} - 1, x) = \inf_{u(t_{\rm f} - 1), u(t_{\rm f}) \in U} J(t_{\rm f} - 1, x; u(\cdot))$$

=

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

If $t = t_{\rm f} - 1$:

=

$$\begin{split} V(t_{\rm f}-1,x) &= \inf_{u(t_{\rm f}-1),u(t_{\rm f})\in U} J(t_{\rm f}-1,x;u(\cdot)) \\ &= \inf_{u(t_{\rm f}-1),u(t_{\rm f})\in U} \{\underbrace{\ell(x(t_{\rm f}-1),u(t_{\rm f}-1))}_{\text{independent of } u(t_{\rm f})} + \underbrace{\ell_{\rm f}(x(t_{\rm f}))}_{u(t_{\rm f}-1) \text{ and } u(t_{\rm f})}\} \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_{\mathbf{f}}\}}} J(t, x; u(\cdot))$$

If $t = t_{\rm f} - 1$:

$$\begin{split} V(t_{\rm f}-1,x) &= \inf_{\substack{u(t_{\rm f}-1), u(t_{\rm f}) \in U \\ u(t_{\rm f}-1), u(t_{\rm f}) \in U \\ }} J(t_{\rm f}-1,x;u(\cdot))} \\ &= \inf_{\substack{u(t_{\rm f}-1), u(t_{\rm f}) \in U \\ u(t_{\rm f}) \in U \\ }} \{ \underbrace{\ell(x(t_{\rm f}-1), u(t_{\rm f}-1))}_{\text{independent of } u(t_{\rm f})} + \underbrace{\ell_{\rm f}(x(t_{\rm f}))}_{u(t_{\rm f}-1) \text{ and } u(t_{\rm f})} } \} \\ &= \inf_{u \in U} \{\ell(x,u) + V(t_{\rm f}, \phi(x,u))\} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

V

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

: $T \times X \to \mathbb{R}$ $V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For $t < t_{\rm f}$:

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_{\mathbf{f}}\}}} J(t, x; u(\cdot))$$

For $t < t_{\rm f}$:

$$\begin{split} V(t,x) &= \inf_{\substack{u(\tau) \in U \\ \tau \in \{t,t+1,\dots,t_{\rm f}\}}} J(t,x;u(\cdot)) \\ &= \inf_{u \in U} \{\ell(x,u) + V(t+1,\phi(x,u))\} \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bellman equation

finite state systems

V

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

: $T \times X \to \mathbb{R}$ $V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bellman equation

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$V: \ T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t + 1, \dots, t_f\}}} J(t, x; u(\cdot))$$

Bellman equation:

$$\begin{split} V(t_{\rm f},x) &= \ell_{\rm f}(x) & \text{for all } x \in X \\ V(t,x) &= \inf_{u \in U} \{\ell(x,u) + V(t+1,\phi(x,u))\} \\ & \text{for all } x \in X \text{ and all } t \in \{t_0,t_{0+1},\ldots,t_{\rm f}-1\} \end{split}$$

(ロ)、(型)、(E)、(E)、 E) の(()

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

brute force search:

 $O(|U|^{|T|} \times |T| \times |X|)$

$$\begin{aligned} x(t) &\in X = \{x_1, x_2, \dots, x_n\} & |X|: \text{ cardinality of } X \\ u(t) &\in U = \{u_1, u_2, \dots, u_m\} & |U| \\ t &\in T = \{t_0, t_0 + 1, \dots, t_f\} & |T| \end{aligned}$$

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

brute force search:

$$O(|U|^{|T|} \times |T| \times |X|)$$

DP algorithm:

$$\begin{aligned} x(t) &\in X = \{x_1, x_2, \dots, x_n\} & |X|: \text{ cardinality of } X \\ u(t) &\in U = \{u_1, u_2, \dots, u_m\} & |U| \\ t &\in T = \{t_0, t_0 + 1, \dots, t_f\} & |T| \end{aligned}$$

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

brute force search:

$$O(|U|^{|T|} \times |T| \times |X|)$$

DP algorithm:

 $O(|U| \times |X| \times |T|)$

$$\begin{aligned} x(t) &\in X = \{x_1, x_2, \dots, x_n\} & |X|: \text{ cardinality of } X \\ u(t) &\in U = \{u_1, u_2, \dots, u_m\} & |U| \\ t &\in T = \{t_0, t_0 + 1, \dots, t_f\} & |T| \end{aligned}$$

state feedback implementation

finite state systems

Let $V: T \times X \to \mathbb{R}$ be a solution to

$$\begin{split} V(t_{\rm f},x) &= \ell_{\rm f}(x) & \text{for all } x \in X \\ V(t,x) &= \inf_{u \in U} \{\ell(x,u) + V(t+1,\phi(x,u))\} \\ & \text{for all } x \in X \text{ and all } t \in \{t_0,t_{0+1},\ldots,t_{\rm f}-1\} \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

state feedback implementation

finite state systems

Let $V: T \times X \to \mathbb{R}$ be a solution to

$$\begin{split} V(t_{\mathrm{f}},x) &= \ell_{\mathrm{f}}(x) & \text{for all } x \in X \\ V(t,x) &= \inf_{u \in U} \{\ell(x,u) + V(t+1,\phi(x,u))\} \\ & \text{for all } x \in X \text{ and all } t \in \{t_0,t_{0+1},\ldots,t_{\mathrm{f}}-1\} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For a given x at time t, the optimal input u(t) is given as $u(t) = \arg\min_{u \in U} \{\ell(x, u) + V(t + 1, \phi(x, u))\}$

state feedback implementation

finite state systems

Let $V: T \times X \to \mathbb{R}$ be a solution to

$$V(t_{\mathbf{f}}, x) = \ell_{\mathbf{f}}(x) \qquad \text{for all } x \in X$$
$$V(t, x) = \inf_{u \in U} \{\ell(x, u) + V(t + 1, \phi(x, u))\}$$
$$\text{for all } x \in X \text{ and all } t \in \{t_0, t_{0+1}, \dots, t_{\mathbf{f}} - 1\}$$

For a given x at time t, the optimal input u(t) is given as $u(t) = \arg\min_{u \in U} \{\ell(x, u) + V(t + 1, \phi(x, u))\}$

State feedback control:

$$u(t) = u(x(t)) = \arg\min_{u \in U} \{ \underbrace{\ell(x(t), u) + V(t+1, \phi(x(t), u))}_{\bullet} \}$$

computed using the measured state x(t)

$$x(t+1) = \phi(x(t), u(t))$$
 $x(t_0) = x_0 \in X$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
 - decentralization and integration via mechanism design

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00