Advanced Control Systems Engineering I:
Optimal Control

contents

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
- decentralization and integration via mechanism design

finite state systems

optimal control problem

minimum-cost path problem

- multistage decision process

finite state systems

optimal control problem

define $V: X \rightarrow \mathbb{R}$:

$$
\begin{array}{llll}
V\left(x_{1}\right)=40 & V\left(x_{5}\right)=29 & V\left(x_{9}\right)=21 & V\left(x_{13}\right)=20 \\
V\left(x_{2}\right)=35 & V\left(x_{6}\right)=31 & V\left(x_{10}\right)=27 & V\left(x_{14}\right)=10 \\
V\left(x_{3}\right)=36 & V\left(x_{7}\right)=25 & V\left(x_{11}\right)=18 & V\left(x_{15}\right)=11 \\
V\left(x_{4}\right)=29 & V\left(x_{8}\right)=23 & V\left(x_{12}\right)=16 & V\left(x_{16}\right)=0
\end{array}
$$

$V\left(x_{i}\right)$ provides the optimal cost starting from x_{i}
V : cost-to-go

finite state systems

optimal control problem

$$
\left.\left.\begin{array}{c}
x(t) \in X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad u(t) \\
\in U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \\
t
\end{array}\right)\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\}\right\}
$$

finite state systems

optimal control problem

$$
\begin{aligned}
& x(t) \in X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad u(t) \in U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \\
& t \in\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\} \\
& J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
& \inf _{u(\cdot)} J\left(t_{0}, x_{0} ; u(\cdot)\right) \\
& \begin{array}{c||cccc}
\phi\left(x_{i}, u_{j}\right) & u_{1} & u_{2} & \cdots & u_{m} \\
\hline \hline x_{1} & x_{3} & x_{n-2} & \cdots & x_{1} \\
x_{2} & x_{2} & x_{8} & \cdots & x_{n} \\
\vdots & & & & \\
x_{n} & x_{5} & x_{n-7} & \cdots & x_{2}
\end{array}
\end{aligned}
$$

finite state systems

optimal control problem

$$
\begin{aligned}
& x(t) \in X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad u(t) \in U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \\
& t \in\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\} \\
& J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
& \inf _{u(\cdot)} J\left(t_{0}, x_{0} ; u(\cdot)\right) \\
& \begin{array}{c||cccc}
\ell\left(x_{i}, u_{j}\right) & u_{1} & u_{2} & \cdots & u_{m} \\
\hline \hline x_{1} & 3 & 2 & \cdots & -1 \\
x_{2} & 2 & -2 & \cdots & 6 \\
\vdots & & & & \\
x_{n} & -1 & 5 & \cdots & 1.2
\end{array}
\end{aligned}
$$

finite state systems

optimal control problem

$$
\begin{aligned}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
u(t) \in U & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \\
t \in T & =\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\}
\end{aligned}
$$

finite state systems

optimal control problem

$$
\begin{aligned}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
u(t) \in U & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \\
t \in T & =\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
\phi: X \times U \rightarrow X & x(t+1)=\phi(x(t), u(t)) \\
\ell: X \times U \rightarrow \mathbb{R} & \ell(x(t), u(t)) \\
\ell_{\mathrm{f}}: X \rightarrow \mathbb{R} & \ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
\end{array}
$$

finite state systems

optimal control problem

$$
\begin{aligned}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
u(t) \in U & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \\
t \in T & =\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\}
\end{aligned}
$$

$$
\begin{array}{rl}
\phi: X \times U \rightarrow X & x(t+1)=\phi(x(t), u(t)) \\
\ell: X \times U \rightarrow \mathbb{R} & \ell(x(t), u(t)) \\
\ell_{\mathrm{f}}: X \rightarrow \mathbb{R} & \ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
\end{array}
$$

Let $x\left(t_{0}\right)=x_{0} \in X$ be given, and consider the optimal control problem:

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\inf _{\tau=t_{0}}^{t_{\mathrm{f}}-1}} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
u(\tau) \in U \\
\tau \in T \\
\hline
\end{gathered}
$$

finite state systems

optimal control problem

(naive) computational complexities

- \# of possible paths: 20 DP had to find only: 15

$n \times n$	4	5	6	7	8
\# of paths	20	70	252	724	2632
DP computations	15	24	35	48	63

computational complexity

finite state systems

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
$$

brute force search:

$$
\begin{aligned}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} & & |X|: \\
u(t) \in U & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} & & |U| \\
t \in T & =\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\} & & |T|
\end{aligned}
$$

computational complexity

finite state systems

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
$$

brute force search:

$$
O\left(|U|^{|T|} \times|T| \times|X|\right)
$$

$$
\begin{aligned}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} & & |X|: \\
u(t) \in U & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} & & |U| \\
t \in T & =\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\} & & |T|
\end{aligned}
$$

the cost-to-go

finite state systems
Let $x\left(t_{0}\right)=x_{0} \in X$ be given, and consider the optimal control problem:

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\substack{\tau=t_{0}}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
\inf _{\substack{u(\tau) \in U \\
\tau \in T}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{gathered}
$$

the cost-to-go

finite state systems
Let $x\left(t_{0}\right)=x_{0} \in X$ be given, and consider the optimal control problem:

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\substack{\tau=t_{0}}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
\inf _{\substack{u(\tau) \in U \\
\tau \in T}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{gathered}
$$

define the cost-to-go:

the cost-to-go

finite state systems
Let $x\left(t_{0}\right)=x_{0} \in X$ be given, and consider the optimal control problem:

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\substack{\tau=t_{0}}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
\inf _{\substack{u(\tau) \in U \\
\tau \in T}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{gathered}
$$

define the cost-to-go:

$$
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\ \tau \in\left\{t, t+1, \ldots, t_{f}\right\}}} J(t, x ; u(\cdot))
$$

the cost-to-go

finite state systems
Let $x\left(t_{0}\right)=x_{0} \in X$ be given, and consider the optimal control problem:

$$
\begin{aligned}
& J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
& \inf _{\substack{u(\tau) \in U \\
\tau \in T}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{aligned}
$$

define the cost-to-go:

$$
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\ \tau \in\left\{t, t+1, \ldots, t_{f}\right\}}} J(t, x ; u(\cdot))
$$

computing the cost-to-go $V\left(t_{0}, x_{0}\right)$ from the initial state x_{0} at the initial time t_{0} essentially amounts to minimize the cost $J\left(t_{0}, x_{0} ; u(\cdot)\right)$

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

$$
\text { example: } \quad|X|=5 \quad|U|=3 \quad|T|=3
$$

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

example: $\quad|X|=5 \quad|U|=3 \quad|T|=3$

$\phi\left(x_{i}, u_{j}\right)$	u_{1}	u_{2}	u_{3}	$\ell\left(x_{i}, u_{j}\right)$	u_{1}	u_{2}	u_{3}		$\ell_{\mathrm{f}}\left(x_{i}\right)$		$V\left(1, x_{i}\right)$	$V\left(2, x_{i}\right)$	$V\left(3, x_{i}\right)$
x_{1}	x_{3}	x_{1}	x_{5}	x_{1}	1	5	3	x_{1}	1	x_{1}			
x_{2}	x_{4}	x_{3}	x_{2}	x_{2}	4	1	2	x_{2}	2	x_{2}			
x_{3}	x_{2}	x_{5}	x_{4}	x_{3}	2	3	1	x_{3}	3	x_{3}			
x_{4}	x_{1}	x_{2}	x_{1}	x_{4}	3	4	5	x_{4}	4	x_{4}			
x_{5}	x_{5}	x_{4}	x_{3}	x_{5}	5	2	4	x_{5}	5	x_{5}			

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

If $t=t_{\mathrm{f}}$:

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

If $t=t_{\mathrm{f}}$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\inf _{u\left(t_{\mathrm{f}}\right) \in U} J\left(t_{\mathrm{f}}, x ; u\left(t_{\mathrm{f}}\right)\right) \\
& =
\end{aligned}
$$

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

If $t=t_{\mathrm{f}}$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\inf _{u\left(t_{\mathrm{f}}\right) \in U} J\left(t_{\mathrm{f}}, x ; u\left(t_{\mathrm{f}}\right)\right) \\
& =\inf _{u\left(t_{\mathrm{f}}\right) \in U} \underbrace{\ell_{\mathrm{f}}(x)}_{\begin{array}{c}
\text { independent } \\
\text { of } u\left(t_{\mathrm{f}}\right)
\end{array}}=\ell_{\mathrm{f}}(x)
\end{aligned}
$$

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{t}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

If $t=t_{\mathrm{f}}-1$:

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

If $t=t_{\mathrm{f}}-1$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}-1, x\right) & =\inf _{u\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}\right) \in U} J\left(t_{\mathrm{f}}-1, x ; u(\cdot)\right) \\
& =
\end{aligned}
$$

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

If $t=t_{\mathrm{f}}-1$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}-1, x\right) & =\inf _{u\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}\right) \in U} J\left(t_{\mathrm{f}}-1, x ; u(\cdot)\right) \\
& =\inf _{u\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}\right) \in U}\{\underbrace{\ell\left(x\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}-1\right)\right)}_{\text {independent of } u\left(t_{\mathrm{f}}\right)}+\underbrace{\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)}_{\begin{array}{c}
\text { depend on both } \\
u\left(t_{\mathrm{f}}-1\right) \text { and } u\left(t_{\mathrm{f}}\right)
\end{array}}\}
\end{aligned}
$$

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

If $t=t_{\mathrm{f}}-1$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}-1, x\right) & =\inf _{u\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}\right) \in U} J\left(t_{\mathrm{f}}-1, x ; u(\cdot)\right) \\
& =\inf _{u\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}\right) \in U}\{\underbrace{\left(x\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}-1\right)\right)}_{\text {independent of } u\left(t_{\mathrm{f}}\right)}+\underbrace{\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)}_{\begin{array}{c}
\text { depend on both } \\
u\left(t_{\mathrm{f}}-1\right) \text { and } u\left(t_{\mathrm{f}}\right)
\end{array}}\} \\
& =\inf _{u \in U}\left\{\ell(x, u)+V\left(t_{\mathrm{f}}, \phi(x, u)\right)\right\}
\end{aligned}
$$

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

For $t<t_{\mathrm{f}}$:

the cost-to-go

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

For $t<t_{\mathrm{f}}$:

$$
\begin{aligned}
& V(t, x)=\inf _{u(\tau) \in U} J(t, x ; u(\cdot)) \\
&=\inf _{u \in U}\left\{\ell\left(t+1, \ldots, t_{f}\right\}\right. \\
&\{\ell, u)+V(t+1, \phi(x, u))\}
\end{aligned}
$$

Bellman equation

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

Bellman equation

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

Bellman equation:

$$
\begin{aligned}
& V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \quad \text { for all } x \in X \\
& V(t, x)=\inf _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\} \\
& \qquad \text { for all } x \in X \text { and all } t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}
\end{aligned}
$$

computational complexity

finite state systems

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
$$

brute force search:

$$
O\left(|U|^{|T|} \times|T| \times|X|\right)
$$

$$
\begin{array}{rlrl}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} & & |X|: \\
u(t) \in U & \text { cardinality of } X \\
t \in T & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} & & |U| \\
\left.t_{0}+1, \ldots, t_{\mathrm{f}}\right\} & & |T| &
\end{array}
$$

computational complexity

finite state systems

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
$$

brute force search:

$$
O\left(|U|^{|T|} \times|T| \times|X|\right)
$$

DP algorithm:

$$
\begin{array}{rlrl}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} & & |X|: \\
u(t) & \in U & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} & \\
\text { cardinality of } X \\
t \in T & =\left\{t_{0}, t_{0}+1, \ldots, t_{f}\right\} & & |T|
\end{array}
$$

computational complexity

finite state systems

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
$$

brute force search:

$$
O\left(|U|^{|T|} \times|T| \times|X|\right)
$$

DP algorithm:

$$
O(|U| \times|X| \times|T|)
$$

$$
\begin{aligned}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} & & |X|: \\
u(t) \in U & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} & & |U| \\
t \in T & =\left\{t_{0}, t_{0}+1, \ldots, t_{f}\right\} & & |T|
\end{aligned}
$$

state feedback implementation

finite state systems
Let $V: T \times X \rightarrow \mathbb{R}$ be a solution to

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \quad \text { for all } x \in X \\
V(t, x) & =\inf _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\}
\end{aligned}
$$

$$
\text { for all } x \in X \text { and all } t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}
$$

state feedback implementation

finite state systems
Let $V: T \times X \rightarrow \mathbb{R}$ be a solution to

$$
\begin{aligned}
& V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \quad \text { for all } x \in X \\
& V(t, x)=\inf _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\} \\
& \quad \quad \text { for all } x \in X \text { and all } t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}
\end{aligned}
$$

For a given x at time t, the optimal input $u(t)$ is given as

$$
u(t)=\arg \min _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\}
$$

state feedback implementation

finite state systems

Let $V: T \times X \rightarrow \mathbb{R}$ be a solution to

$$
\begin{aligned}
& V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \quad \text { for all } x \in X \\
& V(t, x)=\inf _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\} \\
& \quad \quad \text { for all } x \in X \text { and all } t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}
\end{aligned}
$$

For a given x at time t, the optimal input $u(t)$ is given as

$$
u(t)=\arg \min _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\}
$$

State feedback control:

$$
\begin{aligned}
u(t) & =u(x(t))=\arg \min _{u \in U}\{\underbrace{\ell(x(t), u)+V(t+1, \phi(x(t), u))}_{\text {computed using the measured state } x(t)}\} \\
x(t+1) & =\phi(x(t), u(t)) \quad x\left(t_{0}\right)=x_{0} \in X
\end{aligned}
$$

contents

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
- decentralization and integration via mechanism design

