Advanced Control Systems Engineering I:
Optimal Control

contents

optimal control systems

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
- decentralization and integration via mechanism design

finite state systems

optimal control problem

$$
\begin{aligned}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
u(t) \in U & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \\
t \in T & =\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\}
\end{aligned}
$$

finite state systems

optimal control problem

$$
\begin{aligned}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
u(t) \in U & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \\
t \in T & =\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
\phi: X \times U \rightarrow X & x(t+1)=\phi(x(t), u(t)) \\
\ell: X \times U \rightarrow \mathbb{R} & \ell(x(t), u(t)) \\
\ell_{\mathrm{f}}: X \rightarrow \mathbb{R} & \ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
\end{array}
$$

finite state systems

optimal control problem

$$
\begin{aligned}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
u(t) \in U & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \\
t \in T & =\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\}
\end{aligned}
$$

$$
\begin{array}{rl}
\phi: X \times U \rightarrow X & x(t+1)=\phi(x(t), u(t)) \\
\ell: X \times U \rightarrow \mathbb{R} & \ell(x(t), u(t)) \\
\ell_{\mathrm{f}}: X \rightarrow \mathbb{R} & \ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
\end{array}
$$

Let $x\left(t_{0}\right)=x_{0} \in X$ be given, and consider the optimal control problem:

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\inf _{\tau=t_{0}}^{t_{\mathrm{f}}-1}} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
u(\tau) \in U \\
\tau \in T \\
\hline
\end{gathered}
$$

state feedback implementation

finite state systems
Let $V: T \times X \rightarrow \mathbb{R}$ be a solution to

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \quad \text { for all } x \in X \\
V(t, x) & =\inf _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\}
\end{aligned}
$$

$$
\text { for all } x \in X \text { and all } t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}
$$

state feedback implementation

finite state systems
Let $V: T \times X \rightarrow \mathbb{R}$ be a solution to

$$
\begin{aligned}
& V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \quad \text { for all } x \in X \\
& V(t, x)=\inf _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\} \\
& \quad \quad \text { for all } x \in X \text { and all } t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}
\end{aligned}
$$

For a given x at time t, the optimal input $u(t)$ is given as

$$
u(t)=\arg \min _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\}
$$

state feedback implementation

finite state systems

Let $V: T \times X \rightarrow \mathbb{R}$ be a solution to

$$
\begin{aligned}
& V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \quad \text { for all } x \in X \\
& V(t, x)=\inf _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\} \\
& \quad \quad \text { for all } x \in X \text { and all } t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}
\end{aligned}
$$

For a given x at time t, the optimal input $u(t)$ is given as

$$
u(t)=\arg \min _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\}
$$

State feedback control:

$$
\begin{aligned}
u(t) & =u(x(t))=\arg \min _{u \in U}\{\underbrace{\ell(x(t), u)+V(t+1, \phi(x(t), u))}_{\text {computed using the measured state } x(t)}\} \\
x(t+1) & =\phi(x(t), u(t)) \quad x\left(t_{0}\right)=x_{0} \in X
\end{aligned}
$$

finite state systems

optimal control problem

$$
\begin{aligned}
x(t) \in X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
u(t) \in U & =\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \\
t \in T & =\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\}
\end{aligned}
$$

$$
\begin{array}{rl}
\phi: X \times U \rightarrow X & x(t+1)=\phi(x(t), u(t)) \\
\ell: X \times U \rightarrow \mathbb{R} & \ell(x(t), u(t)) \\
\ell_{\mathrm{f}}: X \rightarrow \mathbb{R} & \ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
\end{array}
$$

Let $x\left(t_{0}\right)=x_{0} \in X$ be given, and consider the optimal control problem:

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\inf _{\tau=t_{0}}^{t_{\mathrm{f}}-1}} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
u(\tau) \in U \\
\tau \in T \\
\hline
\end{gathered}
$$

discrete-time systems

optimal control problem

$$
\begin{aligned}
x(t+1)=f(x(t), u(t)) \quad x\left(t_{0}\right) & =x_{0} \quad t \in T=\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\} \\
x(t) & \in \mathbb{R}^{n} \quad u(t) \in \mathbb{R}^{m}
\end{aligned}
$$

discrete-time systems

optimal control problem

$$
\begin{aligned}
x(t+1)=f(x(t), u(t)) \quad x\left(t_{0}\right) & =x_{0} \quad t \in T=\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\} \\
x(t) & \in \mathbb{R}^{n} \quad u(t) \in \mathbb{R}^{m}
\end{aligned}
$$

For a given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{f}\right)\right)
$$

discrete-time systems

optimal control problem

$$
\begin{aligned}
x(t+1)=f(x(t), u(t)) \quad x\left(t_{0}\right) & =x_{0} \quad t \in T=\left\{t_{0}, t_{0}+1, \ldots, t_{\mathrm{f}}\right\} \\
x(t) & \in \mathbb{R}^{n} \quad u(t) \in \mathbb{R}^{m}
\end{aligned}
$$

For a given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{f}\right)\right) \\
& \inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in T}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{aligned}
$$

the cost-to-go

discrete-time systems
Let $x\left(t_{0}\right)=x_{0} \in X$ be given, and consider the optimal control problem:

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\substack{\tau=t_{0}}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in T}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{gathered}
$$

the cost-to-go

discrete-time systems
Let $x\left(t_{0}\right)=x_{0} \in X$ be given, and consider the optimal control problem:

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\substack{\tau=t_{0}}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in T}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{gathered}
$$

define the cost-to-go:

the cost-to-go

discrete-time systems
Let $x\left(t_{0}\right)=x_{0} \in X$ be given, and consider the optimal control problem:

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\substack{\tau=t_{0}}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in T}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{gathered}
$$

define the cost-to-go:

$$
V: T \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\ \tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
$$

the cost-to-go

discrete-time systems
Let $x\left(t_{0}\right)=x_{0} \in X$ be given, and consider the optimal control problem:

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in T}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{gathered}
$$

define the cost-to-go:

$$
V: T \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\ \tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
$$

computing the cost-to-go $V\left(t_{0}, x_{0}\right)$ from the initial state x_{0} at the initial time t_{0} essentially amounts to minimize the cost $J\left(t_{0}, x_{0} ; u(\cdot)\right)$

the cost-to-go

discrete-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

If $t=t_{\mathrm{f}}$:

the cost-to-go

discrete-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

If $t=t_{\mathrm{f}}$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\inf _{u\left(t_{\mathrm{f}}\right) \in \mathbb{R}^{m}} J\left(t_{\mathrm{f}}, x ; u\left(t_{\mathrm{f}}\right)\right) \\
& =\inf _{u\left(t_{\mathrm{f}}\right) \in \mathbb{R}^{m}} \underbrace{\ell_{\mathrm{f}}(x)}_{\begin{array}{c}
\text { independent } \\
\text { of } u\left(t_{\mathrm{f}}\right)
\end{array}}=\ell_{\mathrm{f}}(x)
\end{aligned}
$$

the cost-to-go

discrete-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

If $t=t_{\mathrm{f}}-1$:

the cost-to-go

discrete-time systems

$$
\text { If } t=t_{\mathrm{f}}-1 \text { : }
$$

$$
\begin{aligned}
V\left(t_{\mathrm{f}}-1, x\right) & =\inf _{u\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}\right) \in \mathbb{R}^{m}} J\left(t_{\mathrm{f}}-1, x ; u(\cdot)\right) \\
& =\inf _{u\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}\right) \in \mathbb{R}^{m}}\{\underbrace{\ell\left(x\left(t_{\mathrm{f}}-1\right), u\left(t_{\mathrm{f}}-1\right)\right)}_{\text {independent of } u\left(t_{\mathrm{f}}\right)}+\underbrace{}_{\left.\begin{array}{c}
\begin{array}{c}
\text { depend on both } \\
u\left(t_{\mathrm{f}}-1\right) \text { and } u\left(t_{\mathrm{f}}\right)
\end{array} \\
\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
\end{array}\right\}} \begin{array}{l}
\inf _{u\left(t_{\mathrm{f}}-1\right) \in \mathbb{R}^{m}}\{\ell\left(x, u\left(t_{\mathrm{f}}-1\right)\right)+\underbrace{u\left(t_{\mathrm{f}}\right) \in \mathbb{R}^{m}} \ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
\end{array}\} \\
& =\inf _{u\left(t_{\mathrm{f}}-1\right) \in \mathbb{R}^{m}}\left\{\ell\left(x, u\left(t_{\mathrm{f}}-1\right)\right)+V\left(t_{\mathrm{f}}, f\left(x, u\left(t_{f}-1\right)\right)\right)\right\} V\left(t_{\mathrm{f}}, f\left(x, u\left(t_{\mathrm{f}}-1\right)\right)\right) \\
& =\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+V\left(t_{\mathrm{f}}, f(x, u)\right)\right\}
\end{aligned}
$$

the cost-to-go

discrete-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

For $t<t_{\mathrm{f}}$:

the cost-to-go

discrete-time systems
For $t<t_{f}$:

$$
\begin{aligned}
V(t, x)= & \inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot)) \\
= & \inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}}\left\{\sum_{\tau=t}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\}
\end{aligned}
$$

$$
=\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\ \tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}}\{\underbrace{\ell(x, u(t))}_{\substack{\text { independent of } u(\tau),}}+\underbrace{\sum_{\tau=t+1}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)}
$$

$$
\tau \in\left\{t+1, t+2, \ldots, t_{f}\right\}
$$

$$
\text { depend on all } u(\tau), \tau \in\left\{t, t+1, \ldots, t_{f}\right.
$$

$$
\begin{aligned}
& \left\{\sum_{\tau=t+1}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right\}\right. \\
& 1, x(t+1))=V(t+1, f(x, u(t)))
\end{aligned}
$$

$$
=\inf \{\ell(x, u(t))+V(t+1, f(x, u(t)))\}
$$

the cost-to-go

discrete-time systems

$$
\begin{aligned}
& V(t, x)=\inf _{u(\tau) \in \mathbb{R}^{m}} J(t, x ; u(\cdot)) \\
& \tau \in\left\{t, t+1, \ldots, t_{f}\right\} \\
& =\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}}\left\{\sum_{\tau=t}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\} \\
& =\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}}\{\underbrace{\ell(x, u(t))}_{\substack{\text { independent of } u(\tau), \tau \in\left\{t+1, t+2, \ldots, t_{\mathrm{f}}\right\}}}+\underbrace{\left.\sum_{\tau=t+1}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\}}_{\text {depend on all } u(\tau), \tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}} \\
& =\inf _{u(t) \in \mathbb{R}^{m}}\{\ell(x, u(t))+\underbrace{}_{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t+1, t+2, \ldots, t_{\mathrm{f}}\right\}}}\left\{\sum_{\tau=t+1}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\}\} \\
& =\inf _{u(t) \in \mathbb{R}^{m}}\{\ell(x, u(t))+V(t+1, f(x, u(t)))\} \\
& =\inf _{u \in \mathbb{R}^{m}}\{\ell(x, u)+V(t+1, f(x, u))\}
\end{aligned}
$$

Bellman equation:

discrete-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in \mathbb{R}^{m} \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

Bellman equation:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \quad \text { for all } x \in \mathbb{R}^{n} \\
V(t, x) & =\inf _{u \in \mathbb{R}^{m}}\{\ell(x, u)+V(t+1, f(x, u))\}
\end{aligned}
$$

for all $x \in \mathbb{R}^{n}$ and all $t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}$

state feedback implementation

discrete-time systems
Let $V: T \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a solution to

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \quad \text { for all } x \in \mathbb{R}^{n} \\
V(t, x) & =\inf _{u \in \mathbb{R}^{m}}\{\ell(x, u)+V(t+1, f(x, u))\}
\end{aligned}
$$

$$
\text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}
$$

state feedback implementation

discrete-time systems
Let $V: T \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a solution to

$$
\begin{aligned}
& V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \quad \text { for all } x \in \mathbb{R}^{n} \\
& V(t, x)=\inf _{u \in \mathbb{R}^{m}}\{\ell(x, u)+V(t+1, f(x, u))\} \\
& \qquad \quad \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}
\end{aligned}
$$

For a given x at time t, the optimal input $u(t)$ is given as

$$
u(t)=\arg \min _{u \in \mathbb{R}^{m}}\{\ell(x, u)+V(t+1, f(x, u))\}
$$

state feedback implementation

discrete-time systems
Let $V: T \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a solution to

$$
\begin{aligned}
& V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \quad \text { for all } x \in \mathbb{R}^{n} \\
& V(t, x)=\inf _{u \in \mathbb{R}^{m}}\{\ell(x, u)+V(t+1, f(x, u))\} \\
&
\end{aligned}
$$

For a given x at time t, the optimal input $u(t)$ is given as

$$
u(t)=\arg \min _{u \in \mathbb{R}^{m}}\{\ell(x, u)+V(t+1, f(x, u))\}
$$

State feedback control:

$$
u(t)=u(x(t))=\arg \min _{u \in \mathbb{R}^{m}}\{\underbrace{\ell(x(t), u)+V(t+1, f(x(t), u))}_{\text {computed using the measured state } x(t)}\}
$$

$$
x(t+1)=f(x(t), u(t)) \quad x\left(t_{0}\right)=x_{0} \in X
$$

contents

optimal control systems

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
- decentralization and integration via mechanism design

