Advanced Control Systems Engineering I:
Optimal Control

contents

optimal control systems

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
- decentralization and integration via mechanism design

continuous-time systems

optimal control problem

$$
\begin{gathered}
\dot{x}(t)=f(x(t), u(t)) \quad \begin{aligned}
& x\left(t_{0}\right)=x_{0} \\
& x(t) \in \mathbb{R}^{n} \\
&\left.u(t) \in t_{0}, t_{\mathrm{f}}\right] \\
& J\left(t_{0}, x_{0} ; u(\cdot)\right)= \int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
& \inf _{u(\cdot)} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{aligned}
\end{gathered}
$$

a solution:

$$
\begin{gathered}
0=\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \quad \text { for all } x \in \mathbb{R}^{n} \\
u(t)=u(x(t))=\arg \min _{u \in \mathbb{R}^{m}}\left\{\ell(x(t), u)+\left(\frac{\partial V}{\partial x}(t, x(t))\right)^{\mathrm{T}} f(x(t), u)\right\}
\end{gathered}
$$

continuous-time systems

optimal control problem

$$
\begin{array}{rlrl}
\dot{x}(t)=f(x(t), u(t)) & x\left(t_{0}\right) & =x_{0} & t \in\left[t_{0}, t_{\mathrm{f}}\right] \\
x(t) & \in \mathbb{R}^{n} & u(t) & \in \mathbb{R}^{m}
\end{array}
$$

continuous-time systems

optimal control problem

$$
\begin{array}{rlrl}
\dot{x}(t)=f(x(t), u(t)) & x\left(t_{0}\right) & =x_{0} & t \in\left[t_{0}, t_{\mathrm{f}}\right] \\
x(t) & \in \mathbb{R}^{n} & u(t) & \in \mathbb{R}^{m}
\end{array}
$$

for a given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
$$

continuous-time systems

optimal control problem

$$
\begin{array}{rlrl}
\dot{x}(t)=f(x(t), u(t)) & x\left(t_{0}\right) & =x_{0} & t \in\left[t_{0}, t_{\mathrm{f}}\right] \\
x(t) & \in \mathbb{R}^{n} & u(t) & \in \mathbb{R}^{m}
\end{array}
$$

for a given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)
$$

optimal control problem

$$
\inf _{\substack{u(\tau) \\ \tau \in\left[t_{0}, t_{\mathrm{f}}\right]}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
$$

the cost-to-go

continuous-time systems for a given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

optimal control problem

$$
\inf _{\substack{u(\tau) \\ \tau \in\left[t_{0}, t_{\mathrm{f}}\right]}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
$$

the cost-to-go

continuous-time systems for a given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

optimal control problem

$$
\inf _{\substack{u(\tau) \\ \tau \in\left[t_{0}, t_{\mathrm{f}}\right]}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
$$

define the cost-to-go

the cost-to-go

continuous-time systems for a given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

optimal control problem

$$
\inf _{\substack{u(\tau) \\ \tau \in\left[t_{0}, t_{\mathrm{f}}\right]}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
$$

define the cost-to-go

$$
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
$$

computing the cost-to-go $V\left(t_{0}, x_{0}\right)$ from the initial state x_{0} at the initial time t_{0} essentially amounts to minimize the cost $J\left(t_{0}, x_{0} ; u(\cdot)\right)$.

the cost-to-go

continuous-time systems

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

$V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
$$

the cost-to-go

continuous-time systems

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

$V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
$$

if $t=t_{\mathrm{f}}$:

the cost-to-go

continuous-time systems

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

$V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
$$

if $t=t_{\mathrm{f}}$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\inf _{u\left(t_{\mathrm{f}}\right)} J\left(t_{\mathrm{f}}, x ; u\left(t_{\mathrm{f}}\right)\right) \\
& =
\end{aligned}
$$

the cost-to-go

continuous-time systems

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

$V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
$$

if $t=t_{\mathrm{f}}$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\inf _{u\left(t_{\mathrm{f}}\right)} J\left(t_{\mathrm{f}}, x ; u\left(t_{\mathrm{f}}\right)\right) \\
& =\inf _{u\left(t_{\mathrm{f}}\right)} \underbrace{\ell_{\mathrm{f}}(x)}_{\begin{array}{c}
\text { independent } \\
\text { of } u\left(t_{\mathrm{f}}\right)
\end{array}}=\ell_{\mathrm{f}}(x)
\end{aligned}
$$

the cost-to-go

continuous-time systems

$$
\begin{array}{r}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \\
V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{array}
$$

the cost-to-go

continuous-time systems

$$
\begin{array}{r}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \\
V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{array}
$$

For $t<t_{\mathrm{f}}$,

the cost-to-go

continuous-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{gathered}
$$

For $t<t_{\mathrm{f}}$, let us pick some small positive constant δt so that $t+\delta t$ is still smaller than t_{f} :

the cost-to-go

continuous-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{gathered}
$$

For $t<t_{\mathrm{f}}$, let us pick some small positive constant δt so that $t+\delta t$ is still smaller than t_{f} :

$$
\begin{aligned}
V(t, x) & =\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot)) \\
& =\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
\end{aligned}
$$

This represents the principle of optimality

the cost-to-go

continuous-time systems

$$
\begin{aligned}
V(t, x) & =\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot)) \\
& =
\end{aligned}
$$

$$
=
$$

the cost-to-go

continuous-time systems

$$
\begin{aligned}
V(t, x) & =\inf _{u(\tau)}\left\{\int_{t \in\left[t, t_{\mathrm{f}}\right]}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\} \\
& = \\
& =
\end{aligned}
$$

the cost-to-go

continuous-time systems

$$
\begin{aligned}
& V(t, x)=\inf _{u(\tau)}^{\tau \in\left[t, t_{\mathrm{f}}\right]}\left\{\int_{t}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\} \\
&=\inf _{u(\tau)}\{\int_{\tau \in\left[t, t_{\mathrm{f}}\right]}^{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau}+\underbrace{\tau \in\left[t+\delta t, t_{\mathrm{f}}\right]}_{\text {independent of } u(\tau),} \\
&\left.\int_{t+\delta t}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right] \\
&=
\end{aligned}
$$

the cost-to-go

continuous-time systems

$$
\begin{aligned}
& V(t, x)=\inf _{u(\tau)}\left\{\int_{t}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\} \\
& \tau \in\left[t, t_{\mathrm{f}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \tau \in\left[t+\delta t, t_{\mathrm{f}}\right] \\
& =\inf _{u(\tau)}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau\right. \\
& \left.+\inf _{u(\tau)}\left\{\int_{t+\delta t}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\}\right\} \\
& \tau \in\left[t+\delta t, t_{\mathrm{f}}\right] \\
& =V(t+\delta t, x(t+\delta t))
\end{aligned}
$$

the cost-to-go

continuous-time systems

$$
\begin{aligned}
V(t, x) & =\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}}\left\{\int_{t}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)\right\} \\
& =\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}}\{\underbrace{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau}_{\begin{array}{c}
\text { independent of } u(\tau), \\
\tau \in\left[t+\delta t, t_{\mathrm{f}}\right]
\end{array}}+\underbrace{\int_{t+\delta t}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right)}_{\text {depend on all } u(\tau), \tau \in\left[t, t_{\mathrm{f}}\right]} . \\
& =\inf _{\substack{u(\tau) \\
\tau(\in t)}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
\end{aligned}
$$

the cost-to-go

continuous-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{gathered}
$$

For $t<t_{\mathrm{f}}$, let us pick some small positive constant δt so that $t+\delta t$ is still smaller than t_{f} :

$$
\begin{aligned}
V(t, x) & =\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot)) \\
& =\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
\end{aligned}
$$

This represents the principle of optimality

Bellman equation

finite state systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\sum_{\tau=t_{0}}^{t_{\mathrm{f}}-1} \ell(x(\tau), u(\tau))+\ell_{\mathrm{f}}\left(x\left(t_{\mathrm{f}}\right)\right) \\
V: T \times X \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \in U \\
\tau \in\left\{t, t+1, \ldots, t_{\mathrm{f}}\right\}}} J(t, x ; u(\cdot))
\end{gathered}
$$

Bellman equation:

$$
\begin{aligned}
& V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \quad \text { for all } x \in X \\
& V(t, x)=\inf _{u \in U}\{\ell(x, u)+V(t+1, \phi(x, u))\} \\
& \qquad \text { for all } x \in X \text { and all } t \in\left\{t_{0}, t_{0+1}, \ldots, t_{\mathrm{f}}-1\right\}
\end{aligned}
$$

the cost-to-go

continuous-time systems
(Bellman equation:)

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
$$

the cost-to-go

continuous-time systems
(Bellman equation:)

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
$$

We consider the infinitesimal version $(\delta t \rightarrow 0)$ of the above relationship

the cost-to-go

continuous-time systems
(Bellman equation:)

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
$$

We consider the infinitesimal version $(\delta t \rightarrow 0)$ of the above relationship first-order Taylor expansion:

$$
x(t)=x \quad x(t+\delta t)=x(t)+\delta x
$$

$$
=
$$

the cost-to-go

continuous-time systems
(Bellman equation:)

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
$$

We consider the infinitesimal version $(\delta t \rightarrow 0)$ of the above relationship
first-order Taylor expansion:

$$
\begin{aligned}
x(t)=x \quad x(t+\delta t) & =x(t)+\delta x \\
& =x(t)+\frac{d x}{d t}(t) \delta t+o(\delta t) \\
& = \\
& =
\end{aligned}
$$

the cost-to-go

continuous-time systems
(Bellman equation:)

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
$$

We consider the infinitesimal version $(\delta t \rightarrow 0)$ of the above relationship
first-order Taylor expansion:

$$
\begin{aligned}
x(t)=x \quad x(t+\delta t) & =x(t)+\delta x \\
& =x(t)+\frac{d x}{d t}(t) \delta t+o(\delta t) \\
& =x(t)+f(x(t), u(t)) \delta t+o(\delta t) \\
& =
\end{aligned}
$$

the cost-to-go

continuous-time systems
(Bellman equation:)

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
$$

We consider the infinitesimal version $(\delta t \rightarrow 0)$ of the above relationship
first-order Taylor expansion:

$$
\begin{aligned}
x(t)=x \quad x(t+\delta t) & =x(t)+\delta x \\
& =x(t)+\frac{d x}{d t}(t) \delta t+o(\delta t) \\
& =x(t)+f(x(t), u(t)) \delta t+o(\delta t) \\
& =x+\underbrace{f(x, u(t)) \delta t+o(\delta t)}_{\delta x}
\end{aligned}
$$

the cost-to-go

continuous-time systems
first-order Taylor expansion:

$$
V(t+\delta t, x(t+\delta t))=
$$

the cost-to-go

continuous-time systems
first-order Taylor expansion:

$$
\left.\begin{array}{rl}
V(t+\delta t, x(t+\delta t))= & V(t, x(t))
\end{array}\right) \frac{\partial V}{\partial t}(t, x(t)) \delta t+o(\delta t) ~=\left(\frac{\partial V}{\partial x}(t, x(t))\right)^{\mathrm{T}} \delta x+o(\delta x)
$$

the cost-to-go

continuous-time systems
first-order Taylor expansion:

$$
\begin{aligned}
V(t+\delta t, x(t+\delta t))=V(t, x(t)) & +\frac{\partial V}{\partial t}(t, x(t)) \delta t+o(\delta t) \\
& +\left(\frac{\partial V}{\partial x}(t, x(t))\right)^{\mathrm{T}} \delta x+o(\delta x) \\
=V(t, x)+ & \frac{\partial V}{\partial t}(t, x) \delta t \\
& +\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t)) \delta t+o(\delta t)
\end{aligned}
$$

the cost-to-go

continuous-time systems
first-order Taylor expansion:

$$
\begin{aligned}
V(t+\delta t, x(t+\delta t))=V(t, x(t)) & +\frac{\partial V}{\partial t}(t, x(t)) \delta t+o(\delta t) \\
& +\left(\frac{\partial V}{\partial x}(t, x(t))\right)^{\mathrm{T}} \delta x+o(\delta x) \\
=V(t, x) & +\frac{\partial V}{\partial t}(t, x) \delta t \\
& +\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t)) \delta t+o(\delta t) \\
\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau & =\int_{0}^{\delta t} \ell(x(t+\tau), u(t+\tau)) d \tau \\
& =\ell(x(t), u(t)) \delta t+o(\delta t) \\
& =\ell(x, u(t)) \delta t+o(\delta t)
\end{aligned}
$$

the cost-to-go

continuous-time systems

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
$$

the cost-to-go

continuous-time systems

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
$$

plugin all:

the cost-to-go

continuous-time systems

$$
V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
$$

plugin all:

$$
\begin{aligned}
V(t, x) & =\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\ell(x, u(t)) \delta t+V(t, x)+\frac{\partial V}{\partial t}(t, x) \delta t+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} .\right. \\
0 & =\frac{\partial V}{\partial t}(t, x) \delta t+\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\ell(x, u(t)) \delta t+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t)) \delta\right. \\
& =\frac{\partial V}{\partial t}(t, x) \delta t+\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\ell(x, u(t)) \delta t+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t)) \delta\right.
\end{aligned}
$$

the cost-to-go

continuous-time systems
dividing by δt :

$$
0=\frac{\partial V}{\partial t}(t, x)+\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\ell(x, u(t))+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t))+\frac{o(\delta t)}{\delta t}\right\}
$$

the cost-to-go

continuous-time systems
dividing by δt :

$$
0=\frac{\partial V}{\partial t}(t, x)+\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\ell(x, u(t))+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t))+\frac{o(\delta t)}{\delta t}\right\}
$$

Let us take δt to be small as $\delta t \rightarrow 0$.

the cost-to-go

continuous-time systems
dividing by δt :
$0=\frac{\partial V}{\partial t}(t, x)+\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\ell(x, u(t))+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t))+\frac{o(\delta t)}{\delta t}\right\}$

Let us take δt to be small as $\delta t \rightarrow 0$. The higher order term $o(\delta t) / \delta t$ disappears, and the infimum is taken over the instantaneous value of u at time t.

the cost-to-go

continuous-time systems
dividing by δt :

$$
0=\frac{\partial V}{\partial t}(t, x)+\inf _{\substack{u(\tau) \\ \tau \in[t, t+\delta t]}}\left\{\ell(x, u(t))+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u(t))+\frac{o(\delta t)}{\delta t}\right\}
$$

Let us take δt to be small as $\delta t \rightarrow 0$. The higher order term $o(\delta t) / \delta t$ disappears, and the infimum is taken over the instantaneous value of u at time t.

$$
0=\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\}
$$

Hamilton-Jacobi-Bellman equation

Continuous-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{gathered}
$$

if $t=t_{\mathrm{f}}$:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\inf _{u\left(t_{\mathrm{f}}\right)} J\left(t_{\mathrm{f}}, x ; u\left(t_{\mathrm{f}}\right)\right) \\
& =\inf _{u\left(t_{\mathrm{f}}\right)} \underbrace{\ell_{\mathrm{f}}(x)}_{\begin{array}{c}
\text { independent } \\
\text { of } u\left(t_{\mathrm{f}}\right)
\end{array}}=\ell_{\mathrm{f}}(x)
\end{aligned}
$$

Hamilton-Jacobi-Bellman equation

Continuous-time systems

$$
\begin{array}{r}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \\
V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{array}
$$

For $t<t_{\mathrm{f}}$:

$$
\begin{aligned}
V(t, x)= & \inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot)) \\
= & \inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
\end{aligned}
$$

This represents the principle of optimality

Hamilton-Jacobi-Bellman equation

Continuous-time systems

$$
\begin{array}{r}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \\
V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{array}
$$

For $t<t_{\mathrm{f}}$:

$$
0=\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\}
$$

Hamilton-Jacobi-Bellman equation

Continuous-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{gathered}
$$

Hamilton-Jacobi-Bellman equation:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \\
0 & =\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

state feedback implementation

Continuous-time systems

Let $V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a solution to

$$
V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \quad \text { for all } x \in \mathbb{R}^{n}
$$

$$
\begin{aligned}
0=\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{m}}\{\ell(x, u)+(& \left.\left.\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

state feedback implementation

Continuous-time systems

Let $V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a solution to

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \\
0 & \text { for all } x \in \frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{n}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

State feedback control:

$$
\begin{aligned}
u(t) & =u(x(t)) \\
& =\arg \min _{u \in \mathbb{R}^{m}}\{\underbrace{\left.\ell(x(t), u)+\left(\frac{\partial V}{\partial x}(t, x(t))\right)^{\mathrm{T}} f(x(t), u)\right\}}_{\text {computed using the measured state } x(t)}
\end{aligned}
$$

$$
\dot{x}(t)=f(x(t), u(t)) \quad x\left(t_{0}\right)=x_{0}
$$

continuous-time systems

optimal control problem

$$
\begin{gathered}
\dot{x}(t)=f(x(t), u(t)) \quad \begin{aligned}
& x\left(t_{0}\right)=x_{0} \\
& x(t) \in \mathbb{R}^{n} \\
&\left.u(t) \in t_{0}, t_{\mathrm{f}}\right] \\
& J\left(t_{0}, x_{0} ; u(\cdot)\right)= \int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
& \inf _{u(\cdot)} J\left(t_{0}, x_{0} ; u(\cdot)\right)
\end{aligned}
\end{gathered}
$$

a solution:

$$
\begin{gathered}
0=\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \quad \text { for all } x \in \mathbb{R}^{n} \\
u(t)=u(x(t))=\arg \min _{u \in \mathbb{R}^{m}}\left\{\ell(x(t), u)+\left(\frac{\partial V}{\partial x}(t, x(t))\right)^{\mathrm{T}} f(x(t), u)\right\}
\end{gathered}
$$

contents

optimal control systems

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
- decentralization and integration via mechanism design

