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continuous-time systems
optimal control problem

ẋ(t) = f (x(t), u(t)) x(t0) = x0 t ∈ [ t0, tf ]

x(t) ∈ Rn u(t) ∈ Rm

J (t0, x0; u(·)) =
∫ tf

t0

`(x(τ), u(τ))dτ + `f(xf(tf))

inf
u(·)

J (t0, x0; u(·))

a solution:

0 =
∂V
∂t

(t, x) + inf
u∈Rm

{`(x, u) +
(

∂V
∂x

(t, x)
)T

f (x, u)}

V (tf, x) = `f(x) for all x ∈ Rn

u(t) = u(x(t)) = arg min
u∈Rm

{`(x(t), u) +
(

∂V
∂x

(t, x(t))
)T

f (x(t), u)}
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the cost-to-go
continuous-time systems

for a given x(t0) = x0 ∈ Rn

J (t0, x0; u(·)) =
∫ tf

t0

`(x(τ), u(τ))dτ + `f(xf(tf))

optimal control problem

inf
u(τ)

τ∈[ t0,tf ]

J (t0, x0; u(·))

define the cost-to-go

V : R× Rn → R V (t, x) = inf
u(τ)

τ∈[ t,tf ]

J (t, x; u(·))

computing the cost-to-go V (t0, x0) from the initial state x0 at the initial
time t0 essentially amounts to minimize the cost J (t0, x0; u(·)).
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the cost-to-go
continuous-time systems

J (t0, x0; u(·)) =
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`(x(τ), u(τ))dτ + `f(xf(tf))

V : R× Rn → R V (t, x) = inf
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J (t, x; u(·))

For t < tf, let us pick some small positive constant δt so that t + δt is
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Bellman equation
finite state systems

J (t0, x0; u(·)) =
tf−1∑
τ=t0

`(x(τ), u(τ)) + `f(x(tf))

V : T × X → R V (t, x) = inf
u(τ)∈U

τ∈{t,t+1,...,tf}

J (t, x; u(·))

Bellman equation:

V (tf, x) = `f(x) for all x ∈ X
V (t, x) = inf

u∈U
{`(x, u) + V (t + 1, φ(x, u))}

for all x ∈ X and all t ∈ {t0, t0+1, . . . , tf − 1}
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continuous-time systems
(Bellman equation:)
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dt
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=

x(t) + f (x(t), u(t))δt + o(δt)

=

x + f (x, u(t))δt + o(δt)︸ ︷︷ ︸
δx
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Hamilton-Jacobi-Bellman equation
Continuous-time systems

J (t0, x0; u(·)) =
∫ tf

t0

`(x(τ), u(τ))dτ + `f(xf(tf))

V : R× Rn → R V (t, x) = inf
u(τ)

τ∈[ t,tf ]

J (t, x; u(·))

if t = tf:

V (tf, x) = inf
u(tf)

J (tf, x; u(tf))

= inf
u(tf)

`f(x)︸︷︷︸
independent

of u(tf)

= `f(x)



Hamilton-Jacobi-Bellman equation
Continuous-time systems

J (t0, x0; u(·)) =
∫ tf

t0

`(x(τ), u(τ))dτ + `f(xf(tf))

V : R× Rn → R V (t, x) = inf
u(τ)

τ∈[ t,tf ]

J (t, x; u(·))

For t < tf:

V (t, x) = inf
u(τ)

τ∈[ t,tf ]

J (t, x; u(·))

= inf
u(τ)

τ∈[ t,t+δt ]

{
∫ t+δt

t
`(x(τ), u(τ))dτ + V (t + δt, x(t + δt))}

This represents the principle of optimality



Hamilton-Jacobi-Bellman equation
Continuous-time systems

J (t0, x0; u(·)) =
∫ tf

t0

`(x(τ), u(τ))dτ + `f(xf(tf))

V : R× Rn → R V (t, x) = inf
u(τ)

τ∈[ t,tf ]

J (t, x; u(·))

For t < tf:

0 =
∂V
∂t

(t, x) + inf
u∈Rm

{`(x, u) +
(

∂V
∂x

(t, x)
)T

f (x, u)}



Hamilton-Jacobi-Bellman equation
Continuous-time systems

J (t0, x0; u(·)) =
∫ tf

t0

`(x(τ), u(τ))dτ + `f(xf(tf))

V : R× Rn → R V (t, x) = inf
u(τ)

τ∈[ t,tf ]

J (t, x; u(·))

Hamilton-Jacobi-Bellman equation:

V (tf, x) = `f(x) for all x ∈ Rn

0 =
∂V
∂t

(t, x) + inf
u∈Rm

{`(x, u) +
(

∂V
∂x

(t, x)
)T

f (x, u)}

for all x ∈ Rn and all t ∈ [ t0, tf )



state feedback implementation
Continuous-time systems
Let V : R× Rn → R be a solution to

V (tf, x) = `f(x) for all x ∈ Rn

0 =
∂V
∂t

(t, x) + inf
u∈Rm

{`(x, u) +
(

∂V
∂x

(t, x)
)T

f (x, u)}

for all x ∈ Rn and all t ∈ [ t0, tf )

State feedback control:

u(t) = u(x(t))

= arg min
u∈Rm

{`(x(t), u) +
(

∂V
∂x

(t, x(t))
)T

f (x(t), u)︸ ︷︷ ︸
computed using the measured state x(t)

}

ẋ(t) = f (x(t), u(t)) x(t0) = x0
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continuous-time systems
optimal control problem

ẋ(t) = f (x(t), u(t)) x(t0) = x0 t ∈ [ t0, tf ]

x(t) ∈ Rn u(t) ∈ Rm

J (t0, x0; u(·)) =
∫ tf

t0

`(x(τ), u(τ))dτ + `f(xf(tf))

inf
u(·)

J (t0, x0; u(·))

a solution:

0 =
∂V
∂t

(t, x) + inf
u∈Rm

{`(x, u) +
(

∂V
∂x

(t, x)
)T

f (x, u)}

V (tf, x) = `f(x) for all x ∈ Rn

u(t) = u(x(t)) = arg min
u∈Rm

{`(x(t), u) +
(

∂V
∂x

(t, x(t))
)T

f (x(t), u)}



contents
optimal control systems

I nonlinear dynamical systems and linear approximations
I dynamic programming
I the principle of optimality
I optimal control of finite state systems
I optimal control of discrete-time systems
I optimal control of continuous-time systems
I optimal control of linear systems
I decentralized optimal control

I decentralization and integration via mechanism design


