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optimal control problem

a solution:

T
0= %‘tf (t,7) + inf {¢(x, )+ <%Z(t,x}> o)

V(ts, x) = le(x) for all z € R™

T
ult) = ula(t)) = arg win £(a(0), 0 + (G- (12(0) ) fGa(), )

ueR™



continuous-time systems

optimal control problem



continuous-time systems

optimal control problem

for a given z(ty) = o € R”

J (to, @3 u(-)) = /t ta(r), u(r)dr + G(a(t)
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optimal control problem

for a given z(ty) = o € R”
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S (to, wo; u(-)) = [ £(x(7), u(r))dr + i((t))

to

optimal control problem

inf  J(to, z0; u(-))

u(r)

TE[ to,t ]
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the cost-to-go

continuous-time systems

for a given z(t)) = 2 € R

t
J(to, zo;u(-)) = [ £(z(7), u(7))dT + €e(ax(tr))

to
optimal control problem
i?f) J(to, 705 u(-))

TE[ to,t ]

define the cost-to-go

V:RxR" =R V(t,z) = II(lf) J(t, x5 u(-))

TE[ L, ]

computing the cost-to-go V({y, 7p) from the initial state zy at the initial
time o essentially amounts to minimize the cost J(t, zo; u(-)).
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continuous-time systems

Tt au()) = [ 6a(r), u(m)dr + flarlh)

to

V: RxR" =R V(t,z) = 11(1f) J(t, z;u(-))
u\tT
TE[ 1t ]
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the cost-to-go

continuous-time systems

3
Ilto, ao5u()) = | Ua(), ulr))dr + br(wi(t)
V: RxR" =R V(t,z) = 11(1f) J(t, z;u(-))
TE[ 1t ]

if t =1
V(t,z) = i&f) I (b, 75 u(tr))

= inf le(z) = le(x)
u(ty) S~~~
independent

of u(tg)
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continuous-time systems

tg

J(t0,70; u()) = / Ua(r), u(m))dr + b(ar(t))

to

V: RxR" =R V(t,z) = II(lf) J(t, x5 u(-))

TE[ L, ]

For t < t, let us pick some small positive constant d¢ so that ¢+ dt is
still smaller than #:

V(t,x) = inf J(t, z;u(-))

u(T)
TE[ Lt ]

t+45t
-t {/ (), u(r))dr + V(¢ + 6t,2(t + 68))}
TG[Z,Z‘-&-(SH !

This represents the principle of optimality
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continuous-time systems
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the cost-to-go

continuous-time systems

Vite) = i {/ a(r), u(r))dr + L))}

TG[ttf]



the cost-to-go

continuous-time systems

t
V(t,z) = 1{1f) {[ (), u(r))dr + (z(k))}
u\T t
TE[ t,te]
145t t |
— i { / (), u(r))dr + / (e, u(r))dr + Ca(t))
u(T) t t+0t
reltt] independent of u(7), depend on all ;r(-r) TE [t t]
T [t+ 6t ]




the cost-to-go

continuous-time systems

V(t,z) = inf {/tff(x(T),u(T))dT—i—Ef(x(tf))}

u(T)
TE[ 1,5
t+6t t
= inf {/ (1), u(T))dr —l—/ Uz(1), u(T))dT + Ce(z(t5))
u(T) n t+5t
melth] independent of u(7), depend on all u(7), T € [, t]
T E[t+ 0t t])
t+dt
= inf { Uz(T), u(T))dT
TE| t,(t-ﬁ)-ﬁt} !

st /H&tﬁ(x(ﬂ,u(T))dT-i-Ef(x(tf))}}
re[ t+ott ]

= V(t+ 5t, a(t + 6t))



the cost-to-go

continuous-time systems

V(ta)= inf { / “a(r), u(r))dr + bz (1)))}

u(T)
t+6t i
= inf {/ (z(T), u(T))dr +/ Uz(7), u(T))dT + Ce((t5))
u(T) t t+0t
Tl independent of u(7), depend on all u(7), 7 € [ t, %]
TE[t+ 0t t]
t+6t
= 1{1f) { (z(7), u(r))dr + V(t + 5t,z(t + t))}
u\T t

TE[ t,t+0t]
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to
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Bellman equation

finite state systems

t—1
I(to, a3 u(-)) = Y £a(r), u(r)) + bi(x(t))
V: TxX—->R V(t,z) = inf J(t, z;u(-))

u(t)eU
re{t,t+1,... ¢}

Bellman equation:

V(tg, z) = le(x) forall z € X
V(t,x) = igg{é(m’ w)+ V(t+1,¢(z,u)}

for all z € X and all t € {to, to1,..., s — 1}



the cost-to-go
continuous-time systems
(Bellman equation:)

t+6t
V(t, x) 1nf {/

Te[tt+6t

(7)) dr + V(t + 6t, x(t + 6t))}
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We consider the infinitesimal version (6¢ — 0) of the above relationship
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the cost-to-go
continuous-time systems
(Bellman equation:)

t+6t
V(t,z) 1nf {/ (1))dr + V(t+ 0t z(t + 01))}

Te[tt+6t

We consider the infinitesimal version (6¢ — 0) of the above relationship

first-order Taylor expansion:

z(t) =z z(t+0t) = z(t) + oz

=z(t) + %( t)ot + o(dt)



the cost-to-go
continuous-time systems
(Bellman equation:)

t+6t
V(t,z) 1nf {/ (1))dr + V(t+ 0t z(t + 01))}

Te[tt+6t

We consider the infinitesimal version (6¢ — 0) of the above relationship

first-order Taylor expansion:
2(t) =z o(t+ 6t) = 2(t) + 0z
= x(t) + %( )0t + o(6t)
z(t) + f(2(t), u(t))dot + o(dt)



the cost-to-go
continuous-time systems
(Bellman equation:)

t+6t
V(t,z) 1nf {/ (1))dr + V(t+ 0t z(t + 01))}

Te[tt+6t

We consider the infinitesimal version (6¢ — 0) of the above relationship

first-order Taylor expansion:
z(t) =z z(t+0t) = z(t) + oz

= x(t) + %(t)(st—l- o(d1)

= z(t) + f(2(t), u(t))dt + o(61)
=z + f(z,u(t))dt + o(dt)
éx
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continuous-time systems
first-order Taylor expansion:

V(t+ ot z(t+ 0t)) =



the cost-to-go
continuous-time systems
first-order Taylor expansion:

V(t+ 0t 2(t + 6t)) = V(¢, 2(t))

i}

ov
+

ot
oV
ox

(t, 2(£))5t + o(51)

T
(t, x(t))) dz + o(dz)



the cost-to-go
continuous-time systems
first-order Taylor expansion:

V(t+ 0t a(t+ 68)) = V(t, 2(t)) + %—‘;(t, 2(£))5¢ + o(51)

N <%Z(t, :c(t)))T 5o+ o(6a)

ov
= V(t,z) + W(t’ z)dt

T
N (‘Z‘;(t, g;)) F(@, u(t))5t + o(51)



the cost-to-go
continuous-time systems
first-order Taylor expansion:

V(t+ 0t a(t+ 68)) = V(t, 2(t)) + %—‘;(t, 2(£))5¢ + o(51)

N < %Z (t, :c(t)))T 5o+ o(6a)

ov
= V(t,z) + W(t’ z)dt

T
N (‘Z‘;(t, g;)) F(@, u(t))5t + o(51)

t+4t ot
/ (), u(r))dr = / Ca(t+7), u(t+ 7)) dr
t 0

= 0(z(t), u(t))dt + o(dt)
= {(z,u(t))ot + o(dt)



the cost-to-go

continuous-time systems

t+0t
V(t,z) = 1?f) {/ (x(r), u(r))dr + V(t+ 0t,x(t + 0t))}
—re[i,;-ét} !



the cost-to-go

continuous-time systems

t+0t
V(t,z) = 1?f) {/ (x(r), u(r))dr + V(t+ 0t,x(t + 0t))}
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plugin all:



the cost-to-go

continuous-time systems

t+0t
V(t,z) = 1{1f) {/ (x(r), u(r))dr + V(t+ 0t,x(t + 0t))}
—re[i,;-ét} !

plugin all:

T
V(t,z) = inf {l(z,u(t))dt+ V(t,x)+ aa‘t/(t, z)ot + <%I;(t’ x)) |

u(r)
TE[ t,t+6t]
oV . oV T
0= 5 —(t,z)0t + &le) {K(x,u(t))ét—f—(ax(t,x)) [z, u(t))d
TE[ t,t+6t]
oV _ oV T
= S tasts it (et (G 00) S )

TE[ t,t+dt]



the cost-to-go

continuous-time systems

dividing by dt:
ov .
o RGN R (CRTON

TE[ t,t+0t]

0




the cost-to-go

continuous-time systems

dividing by dt:
ov .
0= W(t’ T)+ qil(le) {{(z, u(t))+<
TE[ t,t+0t]

Let us take ¢ to be small as 6t — 0.




the cost-to-go

continuous-time systems

dividing by 4t:
T
0= Gty it (e e)) S+

TE[ t,t+0t]

Let us take dt to be small as §¢ — 0. The higher order term o(dt)/d¢
disappears, and the infimum is taken over the instantaneous value of v at
time ¢.



the cost-to-go

continuous-time systems

dividing by 4t:
T
0= Gty it (e e)) S+

TE[ t,t+0t]

Let us take dt to be small as §¢ — 0. The higher order term o(dt)/d¢
disappears, and the infimum is taken over the instantaneous value of v at
time ¢.
oV _ v 5
0= 7(t7 .Z‘) + inf {E(x’ u) + W(ta Jj) f(xv u)}

0t u€eR™



Hamilton-Jacobi-Bellman equation

Continuous-time systems

i
J(to, zo;u(-)) = [ £(z(7), u(7))dT + Le(ax(t))
to
V: RxR" =R V(t,z) = 11(1f) J(t, z;u(-))
TE[ 1]
if t =t
V(t, z) = igf) J (b, z3 u(tr))

u(te

= inf fle(z) = le(x)
u(ty) N~

independent

of u(t)



Hamilton-Jacobi-Bellman equation

Continuous-time systems

tg

J(t0,70; u()) = / Ua(r), u(m))dr + b(ar(t))

to

V:RxR" =R V(t,z) = 1?f) J(t, z;u(+))
TE[t,tf}

For ¢t <

V(t,x) = inf J(t, z;u(-))

u(r)
t+ot
= inf { 0(z(7), u(T))dr + V(t+ 5t z(t + dt))}

u(T)
re[t,t+ot]

This represents the principle of optimality



Hamilton-Jacobi-Bellman equation

Continuous-time systems

13

J(t0,70; u()) = / Ua(r), u(m))dr + b(ar(t))

to

V:RxR" =R V(t,z) = 1?f) J(t, z;u(+))
TE[t,tf}

For ¢t <

T
0= (0) + inf {((a,0) + <%L/(t, x)) F )}



Hamilton-Jacobi-Bellman equation

Continuous-time systems

tg
T(to,70; u()) = / Ua(r), u(r))dr + b(ax(t))

V: RxR"—=R V(t,z) = inf J(t, z;u(-))
Te[tt]

Hamilton-Jacobi-Bellman equation:

V(tg, z) = le() for all z € R"
oV . oV *
0= W(t’ z) + ulergm{ﬁ(x, u) + <8x(t’ x)> flz,u)}

forall z € R” and all t € [ ty, t; )



state feedback implementation
Continuous-time systems
Let V: R x R®™ — R be a solution to

V(tg, z) = le() for all z € R"

T
0= a{;t/ (t,z) + mf AUz, u) + <%Z(t, x)) flz,u)}

forall z € R” and all ¢t € [y, t;)



state feedback implementation
Continuous-time systems
Let V: R x R®™ — R be a solution to

V(tg, z) = le() for all z € R"

T
0= aa‘t/ (t,z) + mf AUz, u) + <%Z(t, x)) flz,u)}

forall z € R” and all ¢t € [y, t;)

State feedback control:

T
= arg min {{(z(t), u) + <%Z(tv I(ﬂ)) f(a(t), u)}

u€R™

~
computed using the measured state z(t)

2(t) = fla(t), u(®))  z(lo) = a0



continuous-time systems

optimal control problem

a solution:

T
0= %‘tf (t,7) + inf {¢(x, )+ <%Z(t,x}> o)

V(ts, x) = le(x) for all z € R™

T
ult) = ula(t)) = arg win £(a(0), 0 + (G- (12(0) ) fGa(), )

ueR™
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