Advanced Control Systems Engineering I:
Optimal Control

contents

optimal control systems

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
- decentralization and integration via mechanism design

continuous-time systems

optimal control problem

$$
\begin{array}{rlrl}
\dot{x}(t)=f(x(t), u(t)) & x\left(t_{0}\right) & =x_{0} & t \in\left[t_{0}, t_{\mathrm{f}}\right] \\
x(t) & \in \mathbb{R}^{n} & u(t) & \in \mathbb{R}^{m}
\end{array}
$$

for a given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

optimal control problem

$$
\inf _{\substack{u(\tau) \\ \tau \in\left[t_{0}, t_{\mathrm{f}}\right]}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
$$

the cost-to-go

continuous-time systems for a given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

optimal control problem

$$
\inf _{\substack{u(\tau) \\ \tau \in\left[t_{0}, t_{\mathrm{f}}\right]}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
$$

define the cost-to-go

$$
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
$$

computing the cost-to-go $V\left(t_{0}, x_{0}\right)$ from the initial state x_{0} at the initial time t_{0} essentially amounts to minimize the cost $J\left(t_{0}, x_{0} ; u(\cdot)\right)$.

the cost-to-go

continuous-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{gathered}
$$

For $t<t_{\mathrm{f}}$, let us pick some small positive constant δt so that $t+\delta t$ is still smaller than t_{f} :

$$
\begin{aligned}
V(t, x) & =\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot)) \\
& =\inf _{\substack{u(\tau) \\
\tau \in[t, t+\delta t]}}\left\{\int_{t}^{t+\delta t} \ell(x(\tau), u(\tau)) d \tau+V(t+\delta t, x(t+\delta t))\right\}
\end{aligned}
$$

This represents the principle of optimality

Hamilton-Jacobi-Bellman equation

continuous-time systems

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{gathered}
$$

Hamilton-Jacobi-Bellman equation:

$$
\begin{aligned}
& V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \\
& \text { for all } x \in \mathbb{R}^{n} \\
& 0=\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

state feedback implementation

continuous-time systems

Let $V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a solution to

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \\
0 & \text { for all } x \in \frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{n}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

state feedback control:

$$
\begin{aligned}
u(t) & =u(x(t)) \\
& =\arg \min _{u \in \mathbb{R}^{m}}\{\underbrace{\left.\ell(x(t), u)+\left(\frac{\partial V}{\partial x}(t, x(t))\right)^{\mathrm{T}} f(x(t), u)\right\}}_{\text {computed using the measured state } x(t)}
\end{aligned}
$$

$$
\dot{x}(t)=f(x(t), u(t)) \quad x\left(t_{0}\right)=x_{0}
$$

example

continuous-time systems

$$
\begin{array}{rlrl}
\dot{x}(t)=f(x(t), u(t)) & x\left(t_{0}\right) & =x_{0} & t \in\left[t_{0}, t_{\mathrm{f}}\right] \\
x(t) & \in \mathbb{R}^{n} & u(t) & \in \mathbb{R}^{m}
\end{array}
$$

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

example

continuous-time systems

$$
\begin{gathered}
\begin{array}{rl}
\dot{x}(t)=f(x(t), u(t)) & =x_{0} \\
x(t) & \in \mathbb{R}^{n} \\
& \left.u(t) \in t_{0}, t_{\mathrm{f}}\right] \\
\\
& \\
\dot{x}(t)=u(t) \quad & \\
x\left(t_{0}\right)=x_{0} & t \in\left[t_{0}, t_{\mathrm{f}}\right] \\
x(t) \in \mathbb{R} & u(t) \in \mathbb{R}
\end{array} \\
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
\end{gathered}
$$

example

continuous-time systems

$$
\begin{gathered}
\left.\begin{array}{c}
\dot{x}(t)=f(x(t), u(t)) \\
x(t)
\end{array}\right)=x_{0} \quad \begin{array}{l}
t \in\left[t_{0}, t_{\mathrm{f}}\right] \\
u(t) \in \mathbb{R}^{m}
\end{array} \\
\dot{x}(t)=u(t) \quad \begin{array}{cl}
x\left(t_{0}\right)=x_{0} & t \in\left[t_{0}, t_{\mathrm{f}}\right] \\
x(t) \in \mathbb{R} & u(t) \in \mathbb{R}
\end{array} \\
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} x^{4}(\tau)+u^{4}(\tau) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
\end{gathered}
$$

example

continuous-time systems

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \\
& \text { for all } x \in \mathbb{R}^{n} \\
0 & =\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

example

continuous-time systems

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \\
0 & \text { for all } x \in \frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{n}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

$$
0=\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}}\left\{x^{4}+u^{4}+\frac{\partial V}{\partial x}(t, x) u\right\}
$$

example

continuous-time systems

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \\
0 & \text { for all } x \in \frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{n}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

$$
0=\frac{\partial V}{\partial t}(t, x)+x^{4}+\inf _{u \in \mathbb{R}}\left\{u^{4}+\frac{\partial V}{\partial x}(t, x) u\right\}
$$

example

continuous-time systems

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \\
0 & \text { for all } x \in \frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{n}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

$$
\begin{gathered}
0=\frac{\partial V}{\partial t}(t, x)+x^{4}+\inf _{u \in \mathbb{R}}\left\{u^{4}+\frac{\partial V}{\partial x}(t, x) u\right\} \\
u^{*}=\left(-\frac{1}{4} \frac{\partial V}{\partial x}(t, x)\right)^{1 / 3}=-\left(\frac{1}{4} \frac{\partial V}{\partial x}(t, x)\right)^{1 / 3}
\end{gathered}
$$

example

continuous-time systems

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \\
0 & \text { for all } x \in \frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{n}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

$$
\begin{gathered}
0=\frac{\partial V}{\partial t}(t, x)+x^{4}+\inf _{u \in \mathbb{R}}\left\{u^{4}+\frac{\partial V}{\partial x}(t, x) u\right\} \\
u^{*}=\left(-\frac{1}{4} \frac{\partial V}{\partial x}(t, x)\right)^{1 / 3}=-\left(\frac{1}{4} \frac{\partial V}{\partial x}(t, x)\right)^{1 / 3}
\end{gathered}
$$

$$
0=\frac{\partial V}{\partial t}(t, x)+x^{4}+\left(\frac{1}{4} \frac{\partial V}{\partial x}(t, x)\right)^{4 / 3}-\frac{\partial V}{\partial x}(t, x)\left(\frac{1}{4} \frac{\partial V}{\partial x}(t, x)\right)^{1 / 3}
$$

example

continuous-time systems

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \\
0 & =\frac{\partial V}{\partial t}(t, x)+x^{4}-3\left(\frac{1}{4} \frac{\partial V}{\partial x}(t, x)\right)^{4 / 3}
\end{aligned}
$$

infinite horizon problem

continuous-time systems

$$
\begin{array}{rlrl}
\dot{x}(t)=f(x(t), u(t)) & x\left(t_{0}\right) & =x_{0} & t \in\left[t_{0}, t_{\mathrm{f}}\right] \\
x(t) & \in \mathbb{R}^{n} & u(t) & \in \mathbb{R}^{m}
\end{array}
$$

for a given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

optimal control problem

$$
\inf _{\substack{u(\tau) \\ \tau \in\left[t_{0}, t_{\mathrm{f}}\right]}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
$$

infinite horizon problem

continuous-time systems

$$
\begin{array}{rlrl}
\dot{x}(t)=f(x(t), u(t)) & x(0) & =x_{0} & t \in[0, \infty) \\
x(t) & \in \mathbb{R}^{n} & u(t) \in \mathbb{R}^{m}
\end{array}
$$

for a given $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right)
$$

optimal control problem

$$
\inf _{\substack{u(\tau) \\ \tau \in\left[t_{0}, t_{\mathrm{f}}\right]}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
$$

infinite horizon problem

continuous-time systems

$$
\begin{array}{rlrl}
\dot{x}(t)=f(x(t), u(t)) & x(0) & =x_{0} & t \in[0, \infty) \\
x(t) & \in \mathbb{R}^{n} & u(t) \in \mathbb{R}^{m}
\end{array}
$$

for a given $x(0)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} \ell(x(\tau), u(\tau)) d \tau=\lim _{t \rightarrow \infty} \int_{0}^{t} \ell(x(\tau), u(\tau)) d \tau
$$

optimal control problem

$$
\inf _{\substack{u(\tau) \\ \tau \in\left[t_{0}, t_{\mathrm{f}}\right]}} J\left(t_{0}, x_{0} ; u(\cdot)\right)
$$

infinite horizon problem

continuous-time systems

$$
\begin{array}{rlrl}
\dot{x}(t)=f(x(t), u(t)) & x(0) & =x_{0} & t \in[0, \infty) \\
x(t) & \in \mathbb{R}^{n} & u(t) \in \mathbb{R}^{m}
\end{array}
$$

for a given $x(0)=x_{0} \in \mathbb{R}^{n}$

$$
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} \ell(x(\tau), u(\tau)) d \tau=\lim _{t \rightarrow \infty} \int_{0}^{t} \ell(x(\tau), u(\tau)) d \tau
$$

optimal control problem

$$
\inf _{\substack{u(\tau) \\ \tau \in[0, \infty}} J\left(x_{0} ; u(\cdot)\right)
$$

Hamilton-Jacobi-Bellman equation

infinite horizon problem

$$
\begin{gathered}
J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} \ell(x(\tau), u(\tau)) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\
\tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
\end{gathered}
$$

Hamilton-Jacobi-Bellman equation:

$$
\begin{aligned}
& V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \\
& 0 \text { for all } x \in \mathbb{R}^{n} \\
& \partial t \partial V \\
& 0 \\
& \text { for all } x \in \inf _{u \in \mathbb{R}^{n}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

Hamilton-Jacobi-Bellman equation

infinite horizon problem

$$
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} \ell(x(\tau), u(\tau)) d \tau
$$

$$
V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(t, x)=\inf _{\substack{u(\tau) \\ \tau \in\left[t, t_{\mathrm{f}}\right]}} J(t, x ; u(\cdot))
$$

Hamilton-Jacobi-Bellman equation:

$$
\begin{aligned}
& V\left(t_{\mathrm{f}}, x\right)=\ell_{\mathrm{f}}(x) \\
& 0 \text { for all } x \in \mathbb{R}^{n} \\
& \partial t \partial V \\
& 0 \\
& \text { for all } x \in \inf _{u \in \mathbb{R}^{n}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

Hamilton-Jacobi-Bellman equation

infinite horizon problem

$$
\begin{gathered}
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} \ell(x(\tau), u(\tau)) d \tau \\
V: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(x)=\inf _{\substack{u(\tau) \\
\tau \in[0, \infty)}} J(x ; u(\cdot))
\end{gathered}
$$

Hamilton-Jacobi-Bellman equation:

$$
\begin{aligned}
V\left(t_{\mathrm{f}}, x\right) & =\ell_{\mathrm{f}}(x) \\
0 & =\frac{\partial V}{\partial t}(t, x)+\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(t, x)\right)^{\mathrm{T}} f(x, u)\right\} \\
& \text { for all } x \in \mathbb{R}^{n} \text { and all } t \in\left[t_{0}, t_{\mathrm{f}}\right)
\end{aligned}
$$

Hamilton-Jacobi-Bellman equation

infinite horizon problem

$$
\begin{gathered}
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} \ell(x(\tau), u(\tau)) d \tau \\
V: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad V(x)=\inf _{\substack{u(\tau) \\
\tau \in[0, \infty)}} J(x ; u(\cdot))
\end{gathered}
$$

Hamilton-Jacobi-Bellman equation:

$$
0=\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(x)\right)^{\mathrm{T}} f(x, u)\right\} \quad \text { for all } x \in \mathbb{R}^{n}
$$

state feedback implementation

Let $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a solution to

$$
0=\inf _{u \in \mathbb{R}^{m}}\left\{\ell(x, u)+\left(\frac{\partial V}{\partial x}(x)\right)^{\mathrm{T}} f(x, u)\right\} \quad \text { for all } x \in \mathbb{R}^{n}
$$

state feedback control:

$$
\begin{aligned}
u(t) & =u(x(t)) \\
& =\arg \min _{u \in \mathbb{R}^{m}}\{\underbrace{\ell(x(t), u)+\left(\frac{\partial V}{\partial x}(x(t))\right)^{\mathrm{T}} f(x(t), u)}_{\text {computed using the measured state } x(t)}\} \\
\dot{x}(t) & =f(x(t), u(t)) \quad x\left(t_{0}\right)=x_{0}
\end{aligned}
$$

example

infinite horizon problem

$$
\begin{aligned}
& \dot{x}(t)=u(t) \quad x\left(t_{0}\right)=x_{0} \quad t \in\left[t_{0}, t_{\mathrm{f}}\right] \\
& x(t) \in \mathbb{R} \quad u(t) \in \mathbb{R} \\
& J\left(t_{0}, x_{0} ; u(\cdot)\right)=\int_{t_{0}}^{t_{\mathrm{f}}} x^{4}(\tau)+u^{4}(\tau) d \tau+\ell_{\mathrm{f}}\left(x_{\mathrm{f}}\left(t_{\mathrm{f}}\right)\right) \\
& u^{*}=-\left(\frac{1}{4} \frac{\partial V}{\partial x}(t, x)\right)^{1 / 3} \\
& 0=\frac{\partial V}{\partial t}(t, x)+x^{4}-3\left(\frac{1}{4} \frac{\partial V}{\partial x}(t, x)\right)^{4 / 3}
\end{aligned}
$$

example

infinite horizon problem

$$
\begin{gathered}
\dot{x}(t)=u(t) \quad x(0)=x_{0} \quad t \in[0, \infty) \\
x(t) \in \mathbb{R} \quad u(t) \in \mathbb{R} \\
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{4}(\tau)+u^{4}(\tau) d \tau \\
u^{*}=-\left(\frac{1}{4} \frac{\partial V}{\partial x}(x)\right)^{1 / 3} \\
0=x^{4}-3\left(\frac{1}{4} \frac{\partial V}{\partial x}(x)\right)^{4 / 3}
\end{gathered}
$$

example

infinite horizon problem

$$
\begin{gathered}
\dot{x}(t)=u(t) \quad \begin{array}{c}
x(0)=x_{0} \quad t \in[0, \infty) \\
x(t) \in \mathbb{R} \quad u(t) \in \mathbb{R}
\end{array} \\
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{4}(\tau)+u^{4}(\tau) d \tau \\
u^{*}=-\left(\frac{1}{4} \frac{\partial V}{\partial x}(x)\right)^{1 / 3} \quad u^{*}=-\left(\frac{1}{3}\right)^{1 / 4} x \\
0=x^{4}-3\left(\frac{1}{4} \frac{\partial V}{\partial x}(x)\right)^{4 / 3} \quad \frac{\partial V}{\partial x}(x)=4\left(\frac{1}{3}\right)^{3 / 4} x^{3}
\end{gathered}
$$

example

infinite horizon problem

$$
\begin{gathered}
\qquad \begin{array}{l}
x(t)=u(t)=x_{0} \quad t \in[0, \infty) \\
x(t) \in \mathbb{R} \quad u(t) \in \mathbb{R}
\end{array} \\
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{4}(\tau)+u^{4}(\tau) d \tau \quad x_{0}=2 \\
\text { optimal control } u^{*}=-\left(\frac{1}{3}\right)^{1 / 4} x
\end{gathered}
$$

example

infinite horizon problem

$$
\begin{gathered}
\dot{x}(t)=u(t) \quad \begin{aligned}
& x(0)=x_{0} \quad t \in[0, \infty) \\
& x(t) \in \mathbb{R} \quad u(t) \in \mathbb{R} \\
& J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{4}(\tau)+u^{4}(\tau) d \tau \quad x_{0}=2
\end{aligned}
\end{gathered}
$$

optimal control $u^{*}=-\left(\frac{1}{3}\right)^{1 / 4} x \quad u=-x^{2}$

example

infinite horizon problem

$$
\begin{gathered}
\dot{x}(t)=u(t) \quad \begin{aligned}
& x(0)=x_{0} \quad t \in[0, \infty) \\
& x(t) \in \mathbb{R} \quad u(t) \in \mathbb{R} \\
& J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{4}(\tau)+u^{4}(\tau) d \tau \quad x_{0}=2
\end{aligned}
\end{gathered}
$$

optimal control $u^{*}=-\left(\frac{1}{3}\right)^{1 / 4} x \quad u=-x^{2}$

example

infinite horizon problem

$$
\begin{gathered}
\dot{x}(t)=u(t) \quad \begin{aligned}
& x(0)=x_{0} \quad t \in[0, \infty) \\
& x(t) \in \mathbb{R} \quad u(t) \in \mathbb{R} \\
& J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{4}(\tau)+u^{4}(\tau) d \tau \quad x_{0}=2
\end{aligned}
\end{gathered}
$$

optimal control $u^{*}=-\left(\frac{1}{3}\right)^{1 / 4} x \quad u=-x^{2}$

example

infinite horizon problem

$$
\begin{aligned}
& \dot{x}(t)=u(t) \quad x(0)=x_{0} \quad t \in[0, \infty) \\
& x(t) \in \mathbb{R} \quad u(t) \in \mathbb{R} \\
& J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{4}(\tau)+u^{4}(\tau) d \tau \quad x_{0}=2
\end{aligned}
$$

optimal control $u^{*}=-\left(\frac{1}{3}\right)^{1 / 4} x \quad u=-x^{2}$

example 02

infinite horizon problem

$$
\begin{gathered}
\dot{x}(t)=x^{2}(t)+u(t) \quad \begin{array}{c}
x(0)=x_{0} \quad t \in[0, \infty) \\
x(t) \in \mathbb{R} \quad u(t) \in \mathbb{R}
\end{array} \\
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{2}(\tau)+u^{2}(\tau) d \tau \\
0=\inf _{u \in \mathbb{R}}\left\{x^{2}+u^{2}+\frac{\partial V}{\partial x}(x)\left(x^{2}+u\right)\right\}
\end{gathered}
$$

example 02

infinite horizon problem

$$
\begin{gathered}
\dot{x}(t)=x^{2}(t)+u(t) \quad \begin{array}{l}
x(0)=x_{0} \quad t \in[0, \infty) \\
x(t) \in \mathbb{R} \quad u(t) \in \mathbb{R}
\end{array} \\
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{2}(\tau)+u^{2}(\tau) d \tau \\
0=x^{2}+\frac{\partial V}{\partial x}(x) x^{2}+\inf _{u \in \mathbb{R}}\left\{u^{2}+\frac{\partial V}{\partial x}(x) u\right\}
\end{gathered}
$$

example 02

infinite horizon problem

$$
\begin{gathered}
\dot{x}(t)=x^{2}(t)+u(t) \quad x(0)=x_{0} \quad t \in[0, \infty) \\
x(t) \in \mathbb{R} \quad u(t) \in \mathbb{R} \\
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{2}(\tau)+u^{2}(\tau) d \tau \\
0=x^{2}+\frac{\partial V}{\partial x}(x) x^{2}+\inf _{u \in \mathbb{R}}\left\{u^{2}+\frac{\partial V}{\partial x}(x) u\right\} \\
u^{*}=-\frac{1}{2} \frac{\partial V}{\partial x}(x) \\
0=-\frac{1}{4}\left(\frac{\partial V}{\partial x}(x)\right)^{2}+x^{2} \frac{\partial V}{\partial x}(x)+x^{2}
\end{gathered}
$$

example 02

infinite horizon problem

$$
u^{*}=-\frac{1}{2} \frac{\partial V}{\partial x}(x) \quad 0=-\frac{1}{4}\left(\frac{\partial V}{\partial x}(x)\right)^{2}+x^{2} \frac{\partial V}{\partial x}(x)+x^{2}
$$

example 02

infinite horizon problem

$$
\begin{aligned}
u^{*}=-\frac{1}{2} \frac{\partial V}{\partial x}(x) \quad 0 & =-\frac{1}{4}\left(\frac{\partial V}{\partial x}(x)\right)^{2}+x^{2} \frac{\partial V}{\partial x}(x)+x^{2} \\
\frac{\partial V}{\partial x}(x) & =2\left(x^{2} \mp x \sqrt{x^{2}+1}\right)
\end{aligned}
$$

example 02

infinite horizon problem

$$
\begin{gathered}
u^{*}=-\frac{1}{2} \frac{\partial V}{\partial x}(x) \quad 0=-\frac{1}{4}\left(\frac{\partial V}{\partial x}(x)\right)^{2}+x^{2} \frac{\partial V}{\partial x}(x)+x^{2} \\
\frac{\partial V}{\partial x}(x)=2\left(x^{2} \mp x \sqrt{x^{2}+1}\right) \\
u^{*}=-x^{2}+x \sqrt{x^{2}+1} \quad \text { or } \quad-x^{2}-x \sqrt{x^{2}+1}
\end{gathered}
$$

example 02

infinite horizon problem

$$
\begin{gathered}
u^{*}=-\frac{1}{2} \frac{\partial V}{\partial x}(x) \quad 0=-\frac{1}{4}\left(\frac{\partial V}{\partial x}(x)\right)^{2}+x^{2} \frac{\partial V}{\partial x}(x)+x^{2} \\
\frac{\partial V}{\partial x}(x)=2\left(x^{2} \mp x \sqrt{x^{2}+1}\right) \\
u^{*}=-x^{2}+x \sqrt{x^{2}+1} \quad \text { or } \quad-x^{2}-x \sqrt{x^{2}+1}
\end{gathered}
$$

closed-loop system

$$
\begin{aligned}
\dot{x}(t) & =x^{2}(t)+u(t) \\
& =x(t) \sqrt{x^{2}(t)+1} \quad \text { or } \\
& \text { unstable }
\end{aligned} \quad-x(t) \sqrt{x^{2}(t)+1}
$$

example 02

infinite horizon problem

$$
\begin{array}{rlrl}
\dot{x}(t)=x^{2}(t)+u(t) & x(0) & =x_{0} & t \in[0, \infty) \\
x(t) & \in \mathbb{R} & u(t) \in \mathbb{R} \\
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{2}(\tau)+u^{2}(\tau) d \tau & & x_{0}=6
\end{array}
$$

$$
\text { optimal control } u^{*}=-x^{2}-x \sqrt{x^{2}+1}
$$

example 02

infinite horizon problem

$$
\begin{array}{rlrl}
\dot{x}(t)=x^{2}(t)+u(t) & x(0) & =x_{0} & t \in[0, \infty) \\
x(t) & \in \mathbb{R} & u(t) \in \mathbb{R} \\
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{2}(\tau)+u^{2}(\tau) d \tau & & x_{0}=6
\end{array}
$$

$$
\text { optimal control } \quad u^{*}=-x^{2}-x \sqrt{x^{2}+1} \quad u=-x^{2}-x
$$

example 02

infinite horizon problem

$$
\begin{array}{rlrl}
\dot{x}(t)=x^{2}(t)+u(t) & x(0) & =x_{0} & t \in[0, \infty) \\
x(t) & \in \mathbb{R} & & u(t) \in \mathbb{R} \\
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{2}(\tau)+u^{2}(\tau) d \tau & & x_{0}=6
\end{array}
$$

optimal control $u^{*}=-x^{2}-x \sqrt{x^{2}+1} \quad u=-x^{2}-x$

example 02

infinite horizon problem

$$
\begin{array}{rlrl}
\dot{x}(t)=x^{2}(t)+u(t) & x(0) & =x_{0} & t \in[0, \infty) \\
x(t) & \in \mathbb{R} & & u(t) \in \mathbb{R} \\
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{2}(\tau)+u^{2}(\tau) d \tau & & x_{0}=6
\end{array}
$$

optimal control $u^{*}=-x^{2}-x \sqrt{x^{2}+1} \quad u=-x^{2}-x$

example 02

infinite horizon problem

$$
\begin{array}{rlrl}
\dot{x}(t)=x^{2}(t)+u(t) & x(0) & =x_{0} & t \in[0, \infty) \\
x(t) & \in \mathbb{R} & & u(t) \in \mathbb{R} \\
J\left(x_{0} ; u(\cdot)\right)=\int_{0}^{\infty} x^{2}(\tau)+u^{2}(\tau) d \tau & & x_{0}=6
\end{array}
$$

optimal control $u^{*}=-x^{2}-x \sqrt{x^{2}+1} \quad u=-x^{2}-x$

contents

optimal control systems

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
- decentralization and integration via mechanism design

