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inf J(0, 215 u() = inf > _ €(a(r), u(r))

minimum-cost path problem
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stifles analysis and greatly impedes computation ?

In order to answer this, let us turn to the previously enunciated
principle that it is the structure of the policy which is essential. What
does this mean precisely? It means that we wish to know the charac-
teristics of the system which determine the decision to be made at any
particular stage of the process. Put another way, in place of deterniining
the optimal sequence of decisions from some fixed state of the system,
we wish to determine the optimal decision to be made at any state of
the system. Only if we know the latter, do we understand the intrinsic
structure of the solution.

The mathematical advantage of this formulation lies first of all in
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§ 8. The principle of optimality

In each process, the functional equation governing the process was
obtained by an application of the following intuitive:

PRINCIPLE OF OPTIMALITY. An optimal policy has the property that what-
ever the initial state and initial decision are, the vemaining decisions must
constitute an optimal policy with regard to the state resulting from-the first
decision.

The mathematical transliteration of this simple principle will yield all
the functional equations we shall encounter throughout the remainder
of the book. A proof by contradiction is immediate.

[ Bellman, 1957, p. 83]
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2(t) = f(x(t), u(®)  2(bo) =x  t €[t ]
z(t) e R u(t) e R™

173
inf J (1o, 70, ) = n(lf)/ (x(t), u(t), t)dt
u(- u(-) J

The Principle of Optimality: Let u*(-) be an optimal control that
generates the trajectory z(t), t € [ tp, t |, with z(#) = zp. Then the
trajectory z(-) from (#y, zp) to (¢, z(t)) is optimal if and only if for all #,
to € [ to, t¢], the portion of the trajectory z(-) going from (t1, z(¢1)) to
(t2, z(t2)) optimizes the same cost functional over [t;, t2], where

z(t1) = x1 is a point on the optimal trajectory generated by u*(-).
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(naive) computational complexities
» # of possible paths: 20 DP had to find only: 15

nxn|4 5 6 7 8
# of paths | 20 70 252 724 2632
DP computations | 15 24 35 48 63
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cost-to-go

V(z;) provides the optimal cost starting from z;
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