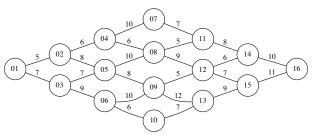
Advanced Control Systems Engineering I: Optimal Control

contents

optimal control

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
 - decentralization and integration via mechanism design

optimal control problem

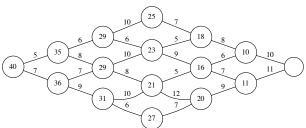


$$X = \{x_1, x_2, \dots, x_{16}\} \qquad u(t) \in U = \{u_u, u_d\}$$
$$t \in [0, 1, 2, 3, 4, 5, 6]$$
$$\inf_{u(\cdot)} J(0, x_1; u(\cdot)) = \inf_{u(\cdot)} \sum_{t=0}^{6} \ell(x(\tau), u(\tau))$$

minimum-cost path problem

multistage decision process

optimal control problem



define $V: X \to \mathbb{R}$:

$$V(x_1) = 40$$
 $V(x_5) = 29$ $V(x_9) = 21$ $V(x_{13}) = 20$
 $V(x_2) = 35$ $V(x_6) = 31$ $V(x_{10}) = 27$ $V(x_{14}) = 10$
 $V(x_3) = 36$ $V(x_7) = 25$ $V(x_{11}) = 18$ $V(x_{15}) = 11$
 $V(x_4) = 29$ $V(x_8) = 23$ $V(x_{12}) = 16$ $V(x_{16}) = 0$

 $V(x_i)$ provides the optimal cost starting from x_i V: cost-to-go

$$x(t) \in X = \{x_1, x_2, \dots, x_n\} \qquad u(t) \in U = \{u_1, u_2, \dots, u_m\}$$
$$t \in \{t_0, t_0 + 1, \dots, t_f\}$$
$$J(t_0, x_0; u(\cdot)) = \sum_{\tau = t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$\inf_{u(\cdot)} J(t_0, x_0; u(\cdot))$$

$$x(t) \in X = \{x_1, x_2, \dots, x_n\} \qquad u(t) \in U = \{u_1, u_2, \dots, u_m\}$$

$$t \in \{t_0, t_0 + 1, \dots, t_f\}$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau = t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{u(\cdot)} J(t_0, x_0; u(\cdot))$$

$$\frac{\phi(x_i, u_j) \mid u_1 \quad u_2 \quad \cdots \quad u_m}{x_1 \quad x_3 \quad x_{n-2} \quad \cdots \quad x_1}$$

$$x_2 \quad x_2 \quad x_8 \quad \cdots \quad x_n$$

$$\vdots$$

$$\vdots$$

$$x_n \quad x_5 \quad x_{n-7} \quad \cdots \quad x_2$$

$$x(t) \in X = \{x_1, x_2, \dots, x_n\} \qquad u(t) \in U = \{u_1, u_2, \dots, u_m\}$$

$$t \in \{t_0, t_0 + 1, \dots, t_f\}$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau = t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{u(\cdot)} J(t_0, x_0; u(\cdot))$$

$$\frac{\ell(x_i, u_j) \parallel u_1 \quad u_2 \quad \cdots \quad u_m}{x_1 \parallel 3 \quad 2 \quad \cdots \quad -1} \qquad \frac{\parallel \ell_f(x_i)}{x_1 \parallel 3}$$

$$x_2 \quad 2 \quad -2 \quad \cdots \quad 6 \qquad x_2 \quad 2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x_n \quad \parallel -1 \quad 5 \quad \cdots \quad 1.2 \qquad x_n \quad \parallel -1$$

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$

 $u(t) \in U = \{u_1, u_2, \dots, u_m\}$
 $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$

 $u(t) \in U = \{u_1, u_2, \dots, u_m\}$
 $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$

$$\phi: X \times U \to X \qquad x(t+1) = \phi(x(t), u(t))$$

$$\ell: X \times U \to \mathbb{R} \qquad \ell(x(t), u(t))$$

$$\ell_{f}: X \to \mathbb{R} \qquad \ell_{f}(x(t_{f}))$$

optimal control problem

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$

 $u(t) \in U = \{u_1, u_2, \dots, u_m\}$
 $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$

$$\phi: X \times U \to X \qquad x(t+1) = \phi(x(t), u(t))$$

$$\ell: X \times U \to \mathbb{R} \qquad \ell(x(t), u(t))$$

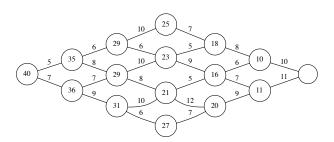
$$\ell_{f}: X \to \mathbb{R} \qquad \ell_{f}(x(t_{f}))$$

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

optimal control problem



(naive) computational complexities

▶ # of possible paths: 20

DP had to find only: 15

$n \times n$					8
# of paths	20	70	252	724	2632
DP computations	15	24	35	48	63

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau = t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

brute force search:

$$x(t) \in X = \{x_1, x_2, \dots, x_n\} \qquad |X|: \quad \text{cardinality of } X$$

$$u(t) \in U = \{u_1, u_2, \dots, u_m\} \qquad |U|$$

$$t \in T = \{t_0, t_0 + 1, \dots, t_f\} \qquad |T|$$

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau = t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

brute force search:

$$O(|U|^{|T|} \times |T| \times |X|)$$

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$
 $|X|$: cardinality of X $u(t) \in U = \{u_1, u_2, \dots, u_m\}$ $|U|$ $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$ $|T|$

finite state systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

finite state systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

define the cost-to-go:

finite state systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

define the cost-to-go:

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

finite state systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

define the cost-to-go:

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_{\ell}\}}} J(t, x; u(\cdot))$$

computing the cost-to-go $V(t_0,x_0)$ from the initial state x_0 at the initial time t_0 essentially amounts to minimize the cost $J(t_0,x_0;u(\cdot))$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t,x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t,t+1,\dots,t_{\mathrm{f}}\}}} J(t,x;u(\cdot))$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

example:
$$|X| = 5$$
 $|U| = 3$ $|T| = 3$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: \ T \times X \to \mathbb{R} \qquad V(t,x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t,t+1,\dots,t_{\mathrm{f}}\}}} J(t,x;u(\cdot))$$

example:
$$|X|=5$$
 $|U|=3$ $|T|=3$

$\phi(x_i, u_j)$	u_1	u_2	u_3	$\ell(x_i, u_j)$	u_1	u_2	u_3			$\ell_{\mathrm{f}}(x_i)$		$V(1,x_i)$	$V(2,x_i)$	$V(3,x_i)$
x_1	x_3	x_1	x_5	x_1	1	5	3	x	ı	1	x_1			
x_2	x_4	x_3	x_2	x_2	4 2	1	2	x		2	x_2			
x_3	x_2	x_5	x_4	x_3	2	3	1	x	3	3	x_3			
x_4	x_1	x_2	x_1	x_4	3	4	5	x	1	4	x_4			
x_5	x_5	x_4	x_3	x_5	5	2	4	x	5	5	x_5			

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_{\mathrm{f}}\}}} J(t, x; u(\cdot))$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

If
$$t = t_f$$
:

finite state systems

If $t = t_f$:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau = t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t + 1, \dots, t_f\}}} J(t, x; u(\cdot))$$

$$f: \qquad V(t_f, x) = \inf_{\substack{u(t_f) \in U \\ u(t_f) \in U}} J(t_f, x; u(t_f))$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{u(\tau) \in U} J(t, x; u(\cdot))$$

 $\tau \in \{t, t+1, ..., t_f\}$

If
$$t = t_f$$
:

$$\begin{split} V(t_{\mathrm{f}},x) &= \inf_{u(t_{\mathrm{f}}) \in U} J(t_{\mathrm{f}},x;u(t_{\mathrm{f}})) \\ &= \inf_{u(t_{\mathrm{f}}) \in U} \underbrace{\ell_{\mathrm{f}}(x)}_{\substack{\text{independent} \\ \text{of } u(t_{\mathrm{f}})}} = \ell_{\mathrm{f}}(x) \end{split}$$

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$
$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{u(\tau) \in U} J(t, x; u(\cdot))$$

 $\tau \in \{t, t+1, ..., t_f\}$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t,x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t,t+1,\dots,t_{\mathrm{f}}\}}} J(t,x;u(\cdot))$$

If
$$t = t_f - 1$$
:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

If
$$t = t_{\rm f} - 1$$
:

$$V(t_{\rm f} - 1, x) = \inf_{u(t_{\rm f} - 1), u(t_{\rm f}) \in U} J(t_{\rm f} - 1, x; u(\cdot))$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_{\mathrm{f}}\}}} J(t, x; u(\cdot))$$

If
$$t = t_{\rm f} - 1$$
:

$$\begin{split} V(t_{\mathrm{f}}-1,x) &= \inf_{u(t_{\mathrm{f}}-1),u(t_{\mathrm{f}}) \in U} J(t_{\mathrm{f}}-1,x;u(\cdot)) \\ &= \inf_{u(t_{\mathrm{f}}-1),u(t_{\mathrm{f}}) \in U} \{\underbrace{\ell(x(t_{\mathrm{f}}-1),u(t_{\mathrm{f}}-1))}_{\text{independent of } u(t_{\mathrm{f}})} + \underbrace{\ell_{\mathrm{f}}(x(t_{\mathrm{f}}))}_{\text{depend on both } u(t_{\mathrm{f}}-1) \text{ and } u(t_{\mathrm{f}})} \} \end{split}$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t,x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t,t+1,\dots,t_{\mathrm{f}}\}}} J(t,x;u(\cdot))$$

If
$$t = t_{\rm f} - 1$$
:

$$\begin{split} V(t_{\mathrm{f}}-1,x) &= \inf_{u(t_{\mathrm{f}}-1),u(t_{\mathrm{f}}) \in U} J(t_{\mathrm{f}}-1,x;u(\cdot)) \\ &= \inf_{u(t_{\mathrm{f}}-1),u(t_{\mathrm{f}}) \in U} \{\underbrace{\ell(x(t_{\mathrm{f}}-1),u(t_{\mathrm{f}}-1))}_{\text{independent of } u(t_{\mathrm{f}})} + \underbrace{\underbrace{\ell_{\mathrm{f}}(x(t_{\mathrm{f}}))}_{\text{depend on both } u(t_{\mathrm{f}}-1) \text{ and } u(t_{\mathrm{f}})}_{u(t_{\mathrm{f}}-1) \text{ and } u(t_{\mathrm{f}})} \} \\ &= \inf_{u \in U} \{\ell(x,u) + V(t_{\mathrm{f}},\phi(x,u))\} \end{split}$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_{\mathrm{f}}\}}} J(t, x; u(\cdot))$$

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau = t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t,x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t,t+1,\dots,t_{\mathrm{f}}\}}} J(t,x;u(\cdot))$$

For $t < t_{\rm f}$:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

For $t < t_{\rm f}$:

$$V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_{\rm f}\}}} J(t, x; u(\cdot))$$
$$= \inf_{\substack{u \in U \\ u \in U}} \{\ell(x, u) + V(t+1, \phi(x, u))\}$$

Bellman equation

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau = t_0}^{t_1 - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t + 1, \dots, t_f\}}} J(t, x; u(\cdot))$$

Bellman equation

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times X \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in U \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

Bellman equation:

$$\begin{split} V(t_{\mathrm{f}},x) &= \ell_{\mathrm{f}}(x) & \text{for all } x \in X \\ V(t,x) &= \inf_{u \in U} \{\ell(x,u) + V(t+1,\phi(x,u))\} \\ & \text{for all } x \in X \text{ and all } t \in \{t_0,t_{0+1},\dots,t_{\mathrm{f}}-1\} \end{split}$$

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau = t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

brute force search:

$$O(|U|^{|T|} \times |T| \times |X|)$$

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$
 $|X|$: cardinality of X $u(t) \in U = \{u_1, u_2, \dots, u_m\}$ $|U|$ $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$ $|T|$

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau = t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

brute force search:

$$O(|U|^{|T|} \times |T| \times |X|)$$

DP algorithm:

$$\begin{aligned} x(t) &\in X = \{x_1, x_2, \dots, x_n\} & |X|: & \text{cardinality of } X \\ u(t) &\in U = \{u_1, u_2, \dots, u_m\} & |U| \\ t &\in T = \{t_0, t_0 + 1, \dots, t_{\mathrm{f}}\} & |T| \end{aligned}$$

finite state systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

brute force search:

$$O(|U|^{|T|} \times |T| \times |X|)$$

DP algorithm:

$$O(|U| \times |X| \times |T|)$$

$$\begin{array}{ll} x(t) \in X = \{x_1, x_2, \dots, x_n\} & |X|: \quad \text{cardinality of } X \\ u(t) \in U = \{u_1, u_2, \dots, u_m\} & |U| \\ t \in T = \{t_0, t_0 + 1, \dots, t_{\mathrm{f}}\} & |T| \end{array}$$

state feedback implementation

finite state systems

Let
$$V:\ T imes X o \mathbb{R}$$
 be a solution to
$$V(t_{\mathrm{f}},x) = \ell_{\mathrm{f}}(x) \qquad \text{for all } x \in X$$

$$V(t,x) = \inf_{u \in U} \{ \ell(x,u) + V(t+1,\phi(x,u)) \}$$

for all $x \in X$ and all $t \in \{t_0, t_{0+1}, \dots, t_{\mathrm{f}} - 1\}$

state feedback implementation

finite state systems

Let
$$V:\ T\times X\to\mathbb{R}$$
 be a solution to

$$\begin{split} V(t_{\mathrm{f}},x) &= \ell_{\mathrm{f}}(x) & \text{for all } x \in X \\ V(t,x) &= \inf_{u \in U} \{\ell(x,u) + V(t+1,\phi(x,u))\} \\ & \text{for all } x \in X \text{ and all } t \in \{t_0,t_{0+1},\dots,t_{\mathrm{f}}-1\} \end{split}$$

For a given x at time t, the optimal input u(t) is given as

$$u(t) = \arg\min_{u \in U} \{\ell(x, u) + V(t+1, \phi(x, u))\}$$

state feedback implementation

finite state systems

Let $V: T \times X \to \mathbb{R}$ be a solution to

$$\begin{split} V(t_{\mathrm{f}},x) &= \ell_{\mathrm{f}}(x) & \text{for all } x \in X \\ V(t,x) &= \inf_{u \in U} \{\ell(x,u) + V(t+1,\phi(x,u))\} \\ & \text{for all } x \in X \text{ and all } t \in \{t_0,t_{0+1},\dots,t_{\mathrm{f}}-1\} \end{split}$$

For a given x at time t, the optimal input u(t) is given as

$$u(t) = \arg\min_{u \in U} \{\ell(x, u) + V(t+1, \phi(x, u))\}$$

State feedback control:

$$u(t) = u(x(t)) = \arg\min_{u \in U} \{\underbrace{\ell(x(t), u) + V(t+1, \phi(x(t), u))}_{\text{computed using the measured state } x(t)} \}$$

$$x(t+1) = \phi(x(t), u(t)) \qquad x(t_0) = x_0 \in X$$

contents

optimal control

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
 - decentralization and integration via mechanism design