Advanced Control Systems Engineering I: Optimal Control

contents

optimal control systems

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
 - decentralization and integration via mechanism design

optimal control problem

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$

 $u(t) \in U = \{u_1, u_2, \dots, u_m\}$
 $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$

optimal control problem

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$

 $u(t) \in U = \{u_1, u_2, \dots, u_m\}$
 $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$

$$\phi: X \times U \to X \qquad x(t+1) = \phi(x(t), u(t))$$

$$\ell: X \times U \to \mathbb{R} \qquad \ell(x(t), u(t))$$

$$\ell_{f}: X \to \mathbb{R} \qquad \ell_{f}(x(t_{f}))$$

optimal control problem

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$

 $u(t) \in U = \{u_1, u_2, \dots, u_m\}$
 $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$

$$\phi: X \times U \to X \qquad x(t+1) = \phi(x(t), u(t))$$

$$\ell: X \times U \to \mathbb{R} \qquad \ell(x(t), u(t))$$

$$\ell_{f}: X \to \mathbb{R} \qquad \ell_{f}(x(t_{f}))$$

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

finite state systems

Let
$$V:\ T imes X o \mathbb{R}$$
 be a solution to
$$V(t_{\mathrm{f}},x) = \ell_{\mathrm{f}}(x) \qquad \text{for all } x \in X$$

$$V(t,x) = \inf_{u \in U} \{ \ell(x,u) + V(t+1,\phi(x,u)) \}$$

for all $x \in X$ and all $t \in \{t_0, t_{0+1}, \dots, t_{\mathrm{f}} - 1\}$

finite state systems

Let
$$V:\ T\times X\to\mathbb{R}$$
 be a solution to

$$\begin{split} V(t_{\mathrm{f}},x) &= \ell_{\mathrm{f}}(x) & \text{for all } x \in X \\ V(t,x) &= \inf_{u \in U} \{\ell(x,u) + V(t+1,\phi(x,u))\} \\ & \text{for all } x \in X \text{ and all } t \in \{t_0,t_{0+1},\dots,t_{\mathrm{f}}-1\} \end{split}$$

For a given x at time t, the optimal input u(t) is given as

$$u(t) = \arg\min_{u \in U} \{\ell(x, u) + V(t+1, \phi(x, u))\}$$

finite state systems

Let $V: T \times X \to \mathbb{R}$ be a solution to

$$\begin{split} V(t_{\mathrm{f}},x) &= \ell_{\mathrm{f}}(x) & \text{for all } x \in X \\ V(t,x) &= \inf_{u \in U} \{\ell(x,u) + V(t+1,\phi(x,u))\} \\ & \text{for all } x \in X \text{ and all } t \in \{t_0,t_{0+1},\dots,t_{\mathrm{f}}-1\} \end{split}$$

For a given x at time t, the optimal input u(t) is given as

$$u(t) = \arg\min_{u \in U} \{\ell(x, u) + V(t+1, \phi(x, u))\}$$

State feedback control:

$$u(t) = u(x(t)) = \arg\min_{u \in U} \{\underbrace{\ell(x(t), u) + V(t+1, \phi(x(t), u))}_{\text{computed using the measured state } x(t)} \}$$

$$x(t+1) = \phi(x(t), u(t)) \qquad x(t_0) = x_0 \in X$$

optimal control problem

$$x(t) \in X = \{x_1, x_2, \dots, x_n\}$$

 $u(t) \in U = \{u_1, u_2, \dots, u_m\}$
 $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$

$$\phi: X \times U \to X \qquad x(t+1) = \phi(x(t), u(t))$$

$$\ell: X \times U \to \mathbb{R} \qquad \ell(x(t), u(t))$$

$$\ell_{f}: X \to \mathbb{R} \qquad \ell_{f}(x(t_{f}))$$

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in U \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

discrete-time systems

optimal control problem

$$x(t+1) = f(x(t), u(t))$$
 $x(t_0) = x_0$ $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$
 $x(t) \in \mathbb{R}^n$ $u(t) \in \mathbb{R}^m$

discrete-time systems

optimal control problem

$$x(t+1) = f(x(t), u(t))$$
 $x(t_0) = x_0$ $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$
 $x(t) \in \mathbb{R}^n$ $u(t) \in \mathbb{R}^m$

For a given $x(t_0) = x_0 \in \mathbb{R}^n$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

discrete-time systems

optimal control problem

$$x(t+1) = f(x(t), u(t))$$
 $x(t_0) = x_0$ $t \in T = \{t_0, t_0 + 1, \dots, t_f\}$
 $x(t) \in \mathbb{R}^n$ $u(t) \in \mathbb{R}^m$

For a given $x(t_0) = x_0 \in \mathbb{R}^n$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

discrete-time systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

discrete-time systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

define the cost-to-go:

discrete-time systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

define the cost-to-go:

$$V: T \times \mathbb{R}^n \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in \{t, t+1, \dots, t_{\mathrm{f}}\}}} J(t, x; u(\cdot))$$

discrete-time systems

Let $x(t_0) = x_0 \in X$ be given, and consider the optimal control problem:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$\inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in T}} J(t_0, x_0; u(\cdot))$$

define the cost-to-go:

$$V: T \times \mathbb{R}^n \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in \{t, t+1, \dots, t_t\}}} J(t, x; u(\cdot))$$

computing the cost-to-go $V(t_0,x_0)$ from the initial state x_0 at the initial time t_0 essentially amounts to minimize the cost $J(t_0,x_0;u(\cdot))$

discrete-time systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times \mathbb{R}^n \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in \{t, t+1, \dots, t_{\mathrm{f}}\}}} J(t, x; u(\cdot))$$

If $t = t_f$:

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times \mathbb{R}^n \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in \{t, t+1, \dots, t_{\mathrm{f}}\}}} J(t, x; u(\cdot))$$

If $t = t_f$:

$$\begin{split} V(t_{\mathrm{f}},x) &= \inf_{u(t_{\mathrm{f}}) \in \mathbb{R}^m} J(t_{\mathrm{f}},x;u(t_{\mathrm{f}})) \\ &= \inf_{u(t_{\mathrm{f}}) \in \mathbb{R}^m} \underbrace{\ell_{\mathrm{f}}(x)}_{\substack{\text{independent} \\ \text{of } u(t_{\mathrm{f}})}} = \ell_{\mathrm{f}}(x) \end{split}$$

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times \mathbb{R}^n \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

If $t = t_f - 1$:

If
$$t = t_f - 1$$
:

$$\begin{split} V(t_{\rm f}-1,x) &= \inf_{u(t_{\rm f}-1),u(t_{\rm f})\in\mathbb{R}^m} J(t_{\rm f}-1,x;u(\cdot)) \\ &= \inf_{u(t_{\rm f}-1),u(t_{\rm f})\in\mathbb{R}^m} \{\underbrace{\ell(x(t_{\rm f}-1),u(t_{\rm f}-1))}_{\text{independent of }u(t_{\rm f})} + \underbrace{\ell_{\rm f}(x(t_{\rm f}))}_{\text{depend on both }u(t_{\rm f}-1) \text{ and }u(t_{\rm f})} \} \\ &= \inf_{u(t_{\rm f}-1)\in\mathbb{R}^m} \{\ell(x,u(t_{\rm f}-1)) + \underbrace{\inf_{u(t_{\rm f})\in\mathbb{R}^m} \ell_{\rm f}(x(t_{\rm f}))}_{u(t_{\rm f})\in\mathbb{R}^m} \ell_{\rm f}(x,u(t_{\rm f}-1))) \} \\ &= \inf_{u(t_{\rm f}-1)\in\mathbb{R}^m} \{\ell(x,u(t_{\rm f}-1)) + V(t_{\rm f},f(x,u(t_{\rm f}-1))) \} \\ &= \inf_{u\in\mathbb{R}^m} \{\ell(x,u) + V(t_{\rm f},f(x,u)) \} \end{split}$$

discrete-time systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau=t_0}^{t_f-1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times \mathbb{R}^n \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in \{t, t+1, \dots, t_f\}}} J(t, x; u(\cdot))$$

For $t < t_{\rm f}$:

discrete-time systems

For
$$t < t_{\rm f}$$
:

For
$$t < t_{\mathrm{f}}$$
:
$$V(t,x) = \inf_{u(\tau) \in \mathbb{R}^m} \ J(t,x;u(\cdot))$$

$$< t_{\rm f}$$
:

 $\tau \in \{t, t+1, ..., t_f\}$

 $\inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in \{t, t+1, \dots, t_f\}}} \{ \sum_{\tau=t}^{\cdot} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f)) \}$

 $\tau {\in} \{t, t{+}1, ..., t_{\mathrm{f}}\} \qquad \text{independent of } u(\tau), \qquad \underbrace{\tau {=} t{+}1}_{}$ $\tau \in \{t+1, t+2, \ldots, t_f\}$

 $\inf_{\substack{u(\tau) \in \mathbb{R}^m \\ (t,t) \in \mathbb{R}^m}} \left\{ \underbrace{\ell(x,u(t))}_{\ell(x,t)} + \sum_{t=1}^{t_{\mathrm{f}}-1} \ell(x(\tau),u(\tau)) + \ell_{\mathrm{f}}(x(t_{\mathrm{f}})) \right\}$

 $=\inf_{u(t)\in\mathbb{R}^m}\{\ell(x,u(t))+\inf_{u(\tau)\in\mathbb{R}^m}\quad \{\sum_{x\in\mathbb{R}^m}\ell(x(\tau),u(\tau))+\ell_{\mathbf{f}}(x(t_{\mathbf{f}}))\}\}$

inf $\{\ell(x,u(t))+V(t+1,f(x,u(t)))\}$

depend on all $u(\tau)$, $\tau \in \{t, t+1, \ldots, t_f\}$

= V(t+1, x(t+1)) = V(t+1, f(x, u(t)))

discrete-time systems

$$\begin{split} V(t,x) &= \inf_{u(\tau) \in \mathbb{R}^m} \ J(t,x;u(\cdot)) \\ &\tau \in \{t,t+1,\dots,t_{\rm f}\} \\ &= \inf_{u(\tau) \in \mathbb{R}^m} \ \{\sum_{\tau=t}^{t_{\rm f}-1} \ell(x(\tau),u(\tau)) + \ell_{\rm f}(x(t_{\rm f}))\} \\ &= \inf_{u(\tau) \in \mathbb{R}^m} \ \{\sum_{\tau=t}^{t_{\rm f}-1} \ell(x(\tau),u(\tau)) + \ell_{\rm f}(x(t_{\rm f}))\} \\ &= \inf_{u(\tau) \in \mathbb{R}^m} \ \{\underbrace{\ell(x,u(t))}_{\substack{\text{independent of } u(\tau), \\ \tau \in \{t,t+1,\dots,t_{\rm f}\}}} + \underbrace{\sum_{\tau=t+1}^{t_{\rm f}-1} \ell(x(\tau),u(\tau)) + \ell_{\rm f}(x(t_{\rm f}))}_{\substack{\text{depend on all } u(\tau), \ \tau \in \{t,t+1,\dots,t_{\rm f}\}}} \\ &= \inf_{u(t) \in \mathbb{R}^m} \{\ell(x,u(t)) + \inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in \{t+1,t+2,\dots,t_{\rm f}\}}} \{\underbrace{\sum_{\tau=t+1}^{t_{\rm f}-1} \ell(x(\tau),u(\tau)) + \ell_{\rm f}(x(t_{\rm f}))}_{\substack{\tau \in \{t+1,t+2,\dots,t_{\rm f}\}}} \\ &= V(t+1,x(t+1)) = V(t+1,f(x,u(t))) \\ &= \inf_{u(t) \in \mathbb{R}^m} \{\ell(x,u(t)) + V(t+1,f(x,u(t)))\} \\ &= \inf_{u\in \mathbb{R}^m} \{\ell(x,u) + V(t+1,f(x,u))\} \end{split}$$

Bellman equation:

discrete-time systems

$$J(t_0, x_0; u(\cdot)) = \sum_{\tau = t_0}^{t_f - 1} \ell(x(\tau), u(\tau)) + \ell_f(x(t_f))$$

$$V: T \times \mathbb{R}^n \to \mathbb{R} \qquad V(t, x) = \inf_{\substack{u(\tau) \in \mathbb{R}^m \\ \tau \in \{t, t + 1, \dots, t_f\}}} J(t, x; u(\cdot))$$

Bellman equation:

$$\begin{split} V(t_{\mathrm{f}},x) &= \ell_{\mathrm{f}}(x) & \text{for all } x \in \mathbb{R}^n \\ V(t,x) &= \inf_{u \in \mathbb{R}^m} \{\ell(x,u) + V(t+1,f(x,u))\} & \text{for all } x \in \mathbb{R}^n \text{ and all } t \in \{t_0,t_{0+1},\dots,t_{\mathrm{f}}-1\} \end{split}$$

discrete-time systems

Let $V:\ T \times \mathbb{R}^n \to \mathbb{R}$ be a solution to

$$\begin{split} V(t_{\mathrm{f}},x) &= \ell_{\mathrm{f}}(x) & \text{for all } x \in \mathbb{R}^n \\ V(t,x) &= \inf_{u \in \mathbb{R}^m} \{\ell(x,u) + V(t+1,f(x,u))\} & \text{for all } x \in \mathbb{R}^n \text{ and all } t \in \{t_0,t_{0+1},\dots,t_{\mathrm{f}}-1\} \end{split}$$

discrete-time systems

Let $V: T \times \mathbb{R}^n \to \mathbb{R}$ be a solution to

$$\begin{split} V(t_{\mathrm{f}},x) &= \ell_{\mathrm{f}}(x) & \text{for all } x \in \mathbb{R}^n \\ V(t,x) &= \inf_{u \in \mathbb{R}^m} \{\ell(x,u) + V(t+1,f(x,u))\} & \text{for all } x \in \mathbb{R}^n \text{ and all } t \in \{t_0,t_{0+1},\dots,t_{\mathrm{f}}-1\} \end{split}$$

For a given \boldsymbol{x} at time t, the optimal input $\boldsymbol{u}(t)$ is given as

$$u(t) = \arg\min_{u \in \mathbb{R}^m} \{\ell(x, u) + V(t+1, f(x, u))\}$$

discrete-time systems

Let $V: T \times \mathbb{R}^n \to \mathbb{R}$ be a solution to

$$\begin{split} V(t_{\mathrm{f}},x) &= \ell_{\mathrm{f}}(x) & \text{for all } x \in \mathbb{R}^n \\ V(t,x) &= \inf_{u \in \mathbb{R}^m} \{\ell(x,u) + V(t+1,f(x,u))\} & \text{for all } x \in \mathbb{R}^n \text{ and all } t \in \{t_0,t_{0+1},\dots,t_{\mathrm{f}}-1\} \end{split}$$

For a given x at time t, the optimal input u(t) is given as

$$u(t) = \arg\min_{u \in \mathbb{R}^m} \{\ell(x, u) + V(t+1, f(x, u))\}$$

State feedback control:

$$u(t) = u(x(t)) = \arg\min_{u \in \mathbb{R}^m} \{ \underbrace{\ell(x(t), u) + V(t+1, f(x(t), u))}_{\text{computed using the measured state } x(t)} \}$$

$$x(t+1) = f(x(t), u(t))$$
 $x(t_0) = x_0 \in X$

contents

optimal control systems

- nonlinear dynamical systems and linear approximations
- dynamic programming
- the principle of optimality
- optimal control of finite state systems
- optimal control of discrete-time systems
- optimal control of continuous-time systems
- optimal control of linear systems
- decentralized optimal control
 - decentralization and integration via mechanism design